Publication Date
In 2025 | 13 |
Since 2024 | 65 |
Since 2021 (last 5 years) | 209 |
Since 2016 (last 10 years) | 487 |
Since 2006 (last 20 years) | 1041 |
Descriptor
Source
Author
Kromrey, Jeffrey D. | 21 |
Fan, Xitao | 18 |
Barcikowski, Robert S. | 16 |
DeSarbo, Wayne S. | 14 |
Donoghue, John R. | 12 |
Ferron, John M. | 12 |
Finch, W. Holmes | 12 |
Zhang, Zhiyong | 11 |
Cohen, Allan S. | 10 |
Finch, Holmes | 10 |
Kim, Seock-Ho | 10 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 49 |
Practitioners | 22 |
Teachers | 19 |
Students | 4 |
Administrators | 2 |
Location
Germany | 10 |
Australia | 7 |
United Kingdom | 7 |
Canada | 6 |
Netherlands | 6 |
United States | 6 |
Belgium | 5 |
California | 5 |
Hong Kong | 5 |
South Korea | 5 |
Spain | 5 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 4 |
Pell Grant Program | 2 |
Aid to Families with… | 1 |
American Recovery and… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 1 |
Does not meet standards | 1 |
Zhan, Wei; Fink, Rainer; Fang, Alex – American Journal of Engineering Education, 2010
Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…
Descriptors: Statistics, Engineering Education, Undergraduate Study, Mathematical Concepts
Enders, Craig K.; Tofighi, Davood – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The purpose of this study was to examine the impact of misspecifying a growth mixture model (GMM) by assuming that Level-1 residual variances are constant across classes, when they do, in fact, vary in each subpopulation. Misspecification produced bias in the within-class growth trajectories and variance components, and estimates were…
Descriptors: Structural Equation Models, Computation, Monte Carlo Methods, Evaluation Methods
Belov, Dmitry I.; Armstrong, Ronald D. – Applied Psychological Measurement, 2008
This article presents an application of Monte Carlo methods for developing and assembling multistage adaptive tests (MSTs). A major advantage of the Monte Carlo assembly over other approaches (e.g., integer programming or enumerative heuristics) is that it provides a uniform sampling from all MSTs (or MST paths) available from a given item pool.…
Descriptors: Monte Carlo Methods, Adaptive Testing, Sampling, Item Response Theory
Hagemann, Dirk; Meyerhoff, David – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The latent state-trait (LST) theory is an extension of the classical test theory that allows one to decompose a test score into a true trait, a true state residual, and an error component. For practical applications, the variances of these latent variables may be estimated with standard methods of structural equation modeling (SEM). These…
Descriptors: Structural Equation Models, Test Theory, Reliability, Sample Size
Hurtz, Gregory M.; Jones, J. Patrick; Jones, Christian N. – Applied Psychological Measurement, 2008
This study compares the efficacy of different strategies for translating item-level, proportion-correct standard-setting judgments into a theta-metric test cutoff score for use with item response theory (IRT) scoring, using Monte Carlo methods. Simulated Angoff-type ratings, consisting of 1,000 independent 75 Item x13 Rater matrices, were…
Descriptors: Monte Carlo Methods, Measures (Individuals), Item Response Theory, Standard Setting
Richey, J. Anthony; Schmidt, Norman B.; Lonigan, Christopher J.; Phillips, Beth M.; Catanzaro, Salvatore J.; Laurent, Jeff; Gerhardstein, Rebecca R.; Kotov, Roman – Journal of Child Psychology and Psychiatry, 2009
Background: The current study examined the categorical versus continuous nature of child and adolescent depression among three samples of children and adolescents ranging from 5 to 19 years. Methods: Depression was measured using the Children's Depression Inventory (CDI). Indicators derived from the CDI were based on factor analytic research on…
Descriptors: Adjustment (to Environment), Depression (Psychology), Child Abuse, Classification
Hafdahl, Adam R.; Williams, Michelle A. – Psychological Methods, 2009
In 2 Monte Carlo studies of fixed- and random-effects meta-analysis for correlations, A. P. Field (2001) ostensibly evaluated Hedges-Olkin-Vevea Fisher-[zeta] and Schmidt-Hunter Pearson-r estimators and tests in 120 conditions. Some authors have cited those results as evidence not to meta-analyze Fisher-[zeta] correlations, especially with…
Descriptors: Monte Carlo Methods, Computer Software, Statistical Analysis, Correlation
Natesan, Prathiba; Thompson, Bruce – Educational and Psychological Measurement, 2007
All effect sizes are sensitive to design flaws and the failure to meet analytic assumptions. But some effect sizes appear to be more robust to assumption violations (e.g., homogeneity of variance). The present study extended prior Monte Carlo research by exploring the robustness of group overlap "I" indices at the relatively small sample…
Descriptors: Effect Size, Monte Carlo Methods, Robustness (Statistics)
Klockars, Alan J.; Lee, Yoonsun – Journal of Educational Measurement, 2008
Monte Carlo simulations with 20,000 replications are reported to estimate the probability of rejecting the null hypothesis regarding DIF using SIBTEST when there is DIF present and/or when impact is present due to differences on the primary dimension to be measured. Sample sizes are varied from 250 to 2000 and test lengths from 10 to 40 items.…
Descriptors: Test Bias, Test Length, Reference Groups, Probability
Finch, Holmes; Stage, Alan Kirk; Monahan, Patrick – Applied Measurement in Education, 2008
A primary assumption underlying several of the common methods for modeling item response data is unidimensionality, that is, test items tap into only one latent trait. This assumption can be assessed several ways, using nonlinear factor analysis and DETECT, a method based on the item conditional covariances. When multidimensionality is identified,…
Descriptors: Test Items, Factor Analysis, Item Response Theory, Comparative Analysis
Knofczynski, Gregory T.; Mundfrom, Daniel – Educational and Psychological Measurement, 2008
When using multiple regression for prediction purposes, the issue of minimum required sample size often needs to be addressed. Using a Monte Carlo simulation, models with varying numbers of independent variables were examined and minimum sample sizes were determined for multiple scenarios at each number of independent variables. The scenarios…
Descriptors: Sample Size, Monte Carlo Methods, Predictor Variables, Prediction
Murphy, Daniel L.; Pituch, Keenan A. – Journal of Experimental Education, 2009
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Descriptors: Sample Size, Computation, Evaluation Methods, Longitudinal Studies
Steinley, Douglas; McDonald, Roderick P. – Multivariate Behavioral Research, 2007
Similarities between latent class models with K classes and linear factor models with K-1 factors are investigated. Specifically, the mathematical equivalence between the covariance structure of the two models is discussed, and a Monte Carlo simulation is performed using generated data that represents both latent factors and latent classes with…
Descriptors: Monte Carlo Methods, Item Response Theory, Factor Analysis
Finch, Holmes – Applied Psychological Measurement, 2010
The accuracy of item parameter estimates in the multidimensional item response theory (MIRT) model context is one that has not been researched in great detail. This study examines the ability of two confirmatory factor analysis models specifically for dichotomous data to properly estimate item parameters using common formulae for converting factor…
Descriptors: Item Response Theory, Computation, Factor Analysis, Models
Savalei, Victoria; Yuan, Ke-Hai – Multivariate Behavioral Research, 2009
Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine…
Descriptors: Statistical Inference, Goodness of Fit, Structural Equation Models, Transformations (Mathematics)