Publication Date
In 2025 | 29 |
Since 2024 | 131 |
Since 2021 (last 5 years) | 409 |
Since 2016 (last 10 years) | 892 |
Since 2006 (last 20 years) | 1639 |
Descriptor
Source
Author
Publication Type
Education Level
Location
Australia | 31 |
Germany | 20 |
United Kingdom (England) | 18 |
United States | 18 |
Canada | 17 |
Netherlands | 17 |
United Kingdom | 13 |
California | 12 |
Spain | 12 |
North Carolina | 11 |
Pennsylvania | 10 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 4 |
Individuals with Disabilities… | 2 |
Aid to Families with… | 1 |
Elementary and Secondary… | 1 |
Elementary and Secondary… | 1 |
Every Student Succeeds Act… | 1 |
Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 2 |
Does not meet standards | 1 |
Kim, Weon H. – ProQuest LLC, 2017
The purpose of the present study is to apply the item response theory (IRT) and testlet response theory (TRT) models to a reading comprehension test. This study applied the TRT models and the traditional IRT model to a seventh-grade reading comprehension test (n = 8,815) with eight testlets. These three models were compared to determine the best…
Descriptors: Item Response Theory, Test Items, Correlation, Reading Tests
Feng, Junchen – ProQuest LLC, 2017
The future of education is human expertise and artificial intelligence working in conjunction, a revolution that will change the education as we know it. The Intelligent Tutoring System is a key component of this future. A quantitative measurement of efficacies of practice to heterogeneous learners is the cornerstone of building an effective…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Bayesian Statistics, Models
Society for Research on Educational Effectiveness, 2017
Bayesian statistical methods have become more feasible to implement with advances in computing but are not commonly used in educational research. In contrast to frequentist approaches that take hypotheses (and the associated parameters) as fixed, Bayesian methods take data as fixed and hypotheses as random. This difference means that Bayesian…
Descriptors: Bayesian Statistics, Educational Research, Statistical Analysis, Decision Making
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A. G. – Child Development, 2014
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are…
Descriptors: Bayesian Statistics, Research Methodology, Prior Learning, Guidelines
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Exploring Patterns of Personal Growth Initiative and Posttraumatic Stress: A Latent Profile Analysis
Shigemoto, Yuki; Robitschek, Christine – Journal of American College Health, 2018
Objective: This study examined the inconsistent relationship found between personal growth initiative (PGI) and posttraumatic stress symptoms (PTSS) by exploring potential subgroups. In addition, after identifying the subgroups, potential predictors of these subgroups were examined. Participants: Participants were 534 undergraduate students who…
Descriptors: Posttraumatic Stress Disorder, Symptoms (Individual Disorders), Undergraduate Students, Student Experience
Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. The Category Adjustment (CA) model suggests that this bias is due to a Bayesian combination of categorical and metric information, which offers an optimal solution under conditions of uncertainty (Huttenlocher, Hedges, & Duncan,…
Descriptors: Spatial Ability, Memory, Models, Task Analysis
Kim, Sooyeon; Moses, Tim; Yoo, Hanwook – Journal of Educational Measurement, 2015
This inquiry is an investigation of item response theory (IRT) proficiency estimators' accuracy under multistage testing (MST). We chose a two-stage MST design that includes four modules (one at Stage 1, three at Stage 2) and three difficulty paths (low, middle, high). We assembled various two-stage MST panels (i.e., forms) by manipulating two…
Descriptors: Comparative Analysis, Item Response Theory, Computation, Accuracy
Anikin, Vasiliy A. – International Journal of Training and Development, 2017
What factors best explain the low incidence of skills training in a late industrial society like Russia? This research undertakes a multilevel analysis of the role of occupational structure in the probability of training. The explanatory power of occupation-specific determinants and skills polarization are evaluated, using a representative 2012…
Descriptors: Foreign Countries, Incidence, Skill Development, Probability
Nelson, Peter M.; Van Norman, Ethan R.; Klingbeil, Dave A.; Parker, David C. – Psychology in the Schools, 2017
Although extensive research exists on the use of curriculum-based measures for progress monitoring, little is known about using computer adaptive tests (CATs) for progress-monitoring purposes. The purpose of this study was to evaluate the impact of the frequency of data collection on individual and group growth estimates using a CAT. Data were…
Descriptors: Progress Monitoring, Computer Assisted Testing, Data Collection, Scheduling
Depaoli, Sarah; Clifton, James P.; Cobb, Patrice R. – Journal of Educational and Behavioral Statistics, 2016
A review of the software Just Another Gibbs Sampler (JAGS) is provided. We cover aspects related to history and development and the elements a user needs to know to get started with the program, including (a) definition of the data, (b) definition of the model, (c) compilation of the model, and (d) initialization of the model. An example using a…
Descriptors: Monte Carlo Methods, Markov Processes, Computer Software, Models
Oh, Hanna; Beck, Jeffrey M.; Zhu, Pingping; Sommer, Marc A.; Ferrari, Silvia; Egner, Tobias – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Much of our real-life decision making is bounded by uncertain information, limitations in cognitive resources, and a lack of time to allocate to the decision process. It is thought that humans overcome these limitations through "satisficing," fast but "good-enough" heuristic decision making that prioritizes some sources of…
Descriptors: Decision Making, Cues, Cognitive Processes, Time
Kruijne, Wouter; Meeter, Martijn – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Studies on "intertrial priming" have shown that in visual search experiments, the preceding trial automatically affects search performance: facilitating it when the target features repeat and giving rise to switch costs when they change--so-called (short-term) intertrial priming. These effects also occur at longer time scales: When 1 of…
Descriptors: Priming, Color, Bias, Long Term Memory
Schmid, Christopher H.; Trikalinos, Thomas A.; Olkin, Ingram – Research Synthesis Methods, 2014
We develop a Bayesian multinomial network meta-analysis model for unordered (nominal) categorical outcomes that allows for partially observed data in which exact event counts may not be known for each category. This model properly accounts for correlations of counts in mutually exclusive categories and enables proper comparison and ranking of…
Descriptors: Bayesian Statistics, Correlation, Comparative Analysis, Meta Analysis
Yamaguchi, Yusuke; Sakamoto, Wataru; Goto, Masashi; Staessen, Jan A.; Wang, Jiguang; Gueyffier, Francois; Riley, Richard D. – Research Synthesis Methods, 2014
When some trials provide individual patient data (IPD) and the others provide only aggregate data (AD), meta-analysis methods for combining IPD and AD are required. We propose a method that reconstructs the missing IPD for AD trials by a Bayesian sampling procedure and then applies an IPD meta-analysis model to the mixture of simulated IPD and…
Descriptors: Meta Analysis, Patients, Bayesian Statistics, Comparative Analysis