Publication Date
In 2025 | 13 |
Since 2024 | 65 |
Since 2021 (last 5 years) | 209 |
Since 2016 (last 10 years) | 487 |
Since 2006 (last 20 years) | 1041 |
Descriptor
Source
Author
Kromrey, Jeffrey D. | 21 |
Fan, Xitao | 18 |
Barcikowski, Robert S. | 16 |
DeSarbo, Wayne S. | 14 |
Donoghue, John R. | 12 |
Ferron, John M. | 12 |
Finch, W. Holmes | 12 |
Zhang, Zhiyong | 11 |
Cohen, Allan S. | 10 |
Finch, Holmes | 10 |
Kim, Seock-Ho | 10 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 49 |
Practitioners | 22 |
Teachers | 19 |
Students | 4 |
Administrators | 2 |
Location
Germany | 10 |
Australia | 7 |
United Kingdom | 7 |
Canada | 6 |
Netherlands | 6 |
United States | 6 |
Belgium | 5 |
California | 5 |
Hong Kong | 5 |
South Korea | 5 |
Spain | 5 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 4 |
Pell Grant Program | 2 |
Aid to Families with… | 1 |
American Recovery and… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 1 |
Does not meet standards | 1 |
Pan, Tianshu; Yin, Yue – Applied Measurement in Education, 2017
In this article, we propose using the Bayes factors (BF) to evaluate person fit in item response theory models under the framework of Bayesian evaluation of an informative diagnostic hypothesis. We first discuss the theoretical foundation for this application and how to analyze person fit using BF. To demonstrate the feasibility of this approach,…
Descriptors: Bayesian Statistics, Goodness of Fit, Item Response Theory, Monte Carlo Methods
Zaidi, Nikki L.; Swoboda, Christopher M.; Kelcey, Benjamin M.; Manuel, R. Stephen – Advances in Health Sciences Education, 2017
The extant literature has largely ignored a potentially significant source of variance in multiple mini-interview (MMI) scores by "hiding" the variance attributable to the sample of attributes used on an evaluation form. This potential source of hidden variance can be defined as rating items, which typically comprise an MMI evaluation…
Descriptors: Interviews, Scores, Generalizability Theory, Monte Carlo Methods
Lee, Wooyeol; Cho, Sun-Joo – Applied Measurement in Education, 2017
Utilizing a longitudinal item response model, this study investigated the effect of item parameter drift (IPD) on item parameters and person scores via a Monte Carlo study. Item parameter recovery was investigated for various IPD patterns in terms of bias and root mean-square error (RMSE), and percentage of time the 95% confidence interval covered…
Descriptors: Item Response Theory, Test Items, Bias, Computation
Porter, Kristin E. – Grantee Submission, 2017
Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Hintze, John M.; Wells, Craig S.; Marcotte, Amanda M.; Solomon, Benjamin G. – Journal of Psychoeducational Assessment, 2018
This study examined the diagnostic accuracy associated with decision making as is typically conducted with curriculum-based measurement (CBM) approaches to progress monitoring. Using previously published estimates of the standard errors of estimate associated with CBM, 20,000 progress-monitoring data sets were simulated to model student reading…
Descriptors: Decision Making, Accuracy, Curriculum Based Assessment, Progress Monitoring
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P. – Educational and Psychological Measurement, 2016
Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Statistical Bias
Sigal, Matthew J.; Chalmers, R. Philip – Journal of Statistics Education, 2016
Monte Carlo simulations (MCSs) provide important information about statistical phenomena that would be impossible to assess otherwise. This article introduces MCS methods and their applications to research and statistical pedagogy using a novel software package for the R Project for Statistical Computing constructed to lessen the often steep…
Descriptors: Mathematics Instruction, Statistics, Monte Carlo Methods, Demonstrations (Educational)
Faucon, Louis; Kidzinski, Lukasz; Dillenbourg, Pierre – International Educational Data Mining Society, 2016
Large-scale experiments are often expensive and time consuming. Although Massive Online Open Courses (MOOCs) provide a solid and consistent framework for learning analytics, MOOC practitioners are still reluctant to risk resources in experiments. In this study, we suggest a methodology for simulating MOOC students, which allow estimation of…
Descriptors: Markov Processes, Monte Carlo Methods, Bayesian Statistics, Online Courses
Zigler, Christina K.; Ye, Feifei – AERA Online Paper Repository, 2016
Mediation in multi-level data can be examined using conflated multilevel modeling (CMM), unconflated multilevel modeling (UMM), or multilevel structural equation modeling (MSEM). A Monte Carlo study was performed to compare the three methods on bias, type I error, and power in a 1-1-1 model with random slopes. The three methods showed no…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Monte Carlo Methods, Statistical Bias
Cao, Mengyang; Tay, Louis; Liu, Yaowu – Educational and Psychological Measurement, 2017
This study examined the performance of a proposed iterative Wald approach for detecting differential item functioning (DIF) between two groups when preknowledge of anchor items is absent. The iterative approach utilizes the Wald-2 approach to identify anchor items and then iteratively tests for DIF items with the Wald-1 approach. Monte Carlo…
Descriptors: Monte Carlo Methods, Test Items, Test Bias, Error of Measurement
Kelcey, Benjamin; Dong, Nianbo; Spybrook, Jessaca; Cox, Kyle – Journal of Educational and Behavioral Statistics, 2017
Designs that facilitate inferences concerning both the total and indirect effects of a treatment potentially offer a more holistic description of interventions because they can complement "what works" questions with the comprehensive study of the causal connections implied by substantive theories. Mapping the sensitivity of designs to…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Mediation Theory, Models
Finch, William Holmes; Hernandez Finch, Maria E. – AERA Online Paper Repository, 2017
High dimensional multivariate data, where the number of variables approaches or exceeds the sample size, is an increasingly common occurrence for social scientists. Several tools exist for dealing with such data in the context of univariate regression, including regularization methods such as Lasso, Elastic net, Ridge Regression, as well as the…
Descriptors: Multivariate Analysis, Regression (Statistics), Sampling, Sample Size
Koziol, Natalie A.; Bovaird, James A. – Educational and Psychological Measurement, 2018
Evaluations of measurement invariance provide essential construct validity evidence--a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or…
Descriptors: Computation, Tests, Error of Measurement, Comparative Analysis
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis