NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 256 to 270 of 1,793 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Robert Meyer; Sara Hu; Michael Christian – Society for Research on Educational Effectiveness, 2022
This paper develops models to measure growth in student achievement with a focus on the possibility of differential growth in achievement for low and high-achieving students. We consider a gap-closing model that evaluates the degree to which students in a target group -- students in the bottom quartile of measured achievement -- perform better…
Descriptors: Academic Achievement, Achievement Gap, Models, Measurement Techniques
Joshua B. Gilbert; James S. Kim; Luke W. Miratrix – Annenberg Institute for School Reform at Brown University, 2022
Analyses that reveal how treatment effects vary allow researchers, practitioners, and policymakers to better understand the efficacy of educational interventions. In practice, however, standard statistical methods for addressing Heterogeneous Treatment Effects (HTE) fail to address the HTE that may exist within outcome measures. In this study, we…
Descriptors: Item Response Theory, Models, Formative Evaluation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez, Oscar; MacKinnon, David P. – Educational and Psychological Measurement, 2018
Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to…
Descriptors: Statistical Analysis, Monte Carlo Methods, Measurement, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel; Xu, Yuning; Thompson, Marilyn S. – Educational and Psychological Measurement, 2018
Parallel analysis (PA) assesses the number of factors in exploratory factor analysis. Traditionally PA compares the eigenvalues for a sample correlation matrix with the eigenvalues for correlation matrices for 100 comparison datasets generated such that the variables are independent, but this approach uses the wrong reference distribution. The…
Descriptors: Factor Analysis, Accuracy, Statistical Distributions, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Mengyang; Song, Q. Chelsea; Tay, Louis – International Journal of Testing, 2018
There is a growing use of noncognitive assessments around the world, and recent research has posited an ideal point response process underlying such measures. A critical issue is whether the typical use of dominance approaches (e.g., average scores, factor analysis, and the Samejima's graded response model) in scoring such measures is adequate.…
Descriptors: Comparative Analysis, Item Response Theory, Factor Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lockwood, J. R.; Castellano, Katherine E.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2022
Many states and school districts in the United States use standardized test scores to compute annual measures of student achievement progress and then use school-level averages of these growth measures for various reporting and diagnostic purposes. These aggregate growth measures can vary consequentially from year to year for the same school,…
Descriptors: Accuracy, Prediction, Programming Languages, Standardized Tests
Gin, Brian; Sim, Nicholas; Skrondal, Anders; Rabe-Hesketh, Sophia – Grantee Submission, 2020
We propose a dyadic Item Response Theory (dIRT) model for measuring interactions of pairs of individuals when the responses to items represent the actions (or behaviors, perceptions, etc.) of each individual (actor) made within the context of a dyad formed with another individual (partner). Examples of its use include the assessment of…
Descriptors: Item Response Theory, Generalization, Item Analysis, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zeynivandnezhad, Fereshteh; Rashed, Fatemeh; Kanooni, Arman – Anatolian Journal of Education, 2019
Factor analysis is a statistical technique that is widely used in psychology and social sciences. Using computers and statistical packages, implementation of multivariate factor analysis and other multivariate methods becomes possible for researchers. Exploratory factor analysis and confirmatory factor analysis are applied in different studies;…
Descriptors: Factor Analysis, Technological Literacy, Pedagogical Content Knowledge, Mathematics Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Nugent, William R. – Educational and Psychological Measurement, 2017
Meta-analysis is a significant methodological advance that is increasingly important in research synthesis. Fundamental to meta-analysis is the presumption that effect sizes, such as the standardized mean difference (SMD), based on scores from different measures are comparable. It has been argued that population observed score SMDs based on scores…
Descriptors: Meta Analysis, Effect Size, Comparative Analysis, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karabatsos, George – Grantee Submission, 2017
This article introduces a Bayesian method for testing the axioms of additive conjoint measurement. The method is based on an importance sampling algorithm that performs likelihood-free, approximate Bayesian inference using a synthetic likelihood to overcome the analytical intractability of this testing problem. This new method improves upon…
Descriptors: Bayesian Statistics, Measurement, Statistical Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Kano, Yutaka – Journal of Educational and Behavioral Statistics, 2018
Meta-analysis plays a key role in combining studies to obtain more reliable results. In social, behavioral, and health sciences, measurement units are typically not well defined. More meaningful results can be obtained by standardizing the variables and via the analysis of the correlation matrix. Structural equation modeling (SEM) with the…
Descriptors: Meta Analysis, Structural Equation Models, Maximum Likelihood Statistics, Least Squares Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nordstokke, David W.; Colp, S. Mitchell – Practical Assessment, Research & Evaluation, 2018
Often, when testing for shift in location, researchers will utilize nonparametric statistical tests in place of their parametric counterparts when there is evidence or belief that the assumptions of the parametric test are not met (i.e., normally distributed dependent variables). An underlying and often unattended to assumption of nonparametric…
Descriptors: Nonparametric Statistics, Statistical Analysis, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Tsaousis, Ioannis; Sideridis, Georgios D.; AlGhamdi, Hannan M. – Journal of Psychoeducational Assessment, 2021
This study evaluated the psychometric quality of a computerized adaptive testing (CAT) version of the general cognitive ability test (GCAT), using a simulation study protocol put forth by Han, K. T. (2018a). For the needs of the analysis, three different sets of items were generated, providing an item pool of 165 items. Before evaluating the…
Descriptors: Computer Assisted Testing, Adaptive Testing, Cognitive Tests, Cognitive Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, HyeSun; Smith, Weldon Z. – Educational and Psychological Measurement, 2020
Based on the framework of testlet models, the current study suggests the Bayesian random block item response theory (BRB IRT) model to fit forced-choice formats where an item block is composed of three or more items. To account for local dependence among items within a block, the BRB IRT model incorporated a random block effect into the response…
Descriptors: Bayesian Statistics, Item Response Theory, Monte Carlo Methods, Test Format
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Pages: 1  |  ...  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  |  22  |  ...  |  120