NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1,591 to 1,605 of 2,225 results Save | Export
Peer reviewed Peer reviewed
Pohl, Norval F.; Bruno, Albert V. – Educational and Psychological Measurement, 1976
A computer program for two-group nonparametric discriminant analysis is presented. Based on Bayes' Theorem for probability revision, the statistical rationale for this program uses the calculation of maximum likelihood estimates of group membership. The program compares the Bayesian procedure to the standard Linear Discriminant Function.…
Descriptors: Bayesian Statistics, Computer Programs, Discriminant Analysis, Nonparametric Statistics
Hoyle, W. G. – Information Storage and Retrieval, 1973
A system of automatic indexing based on Baye's theorem is described briefly. (18 references) (Author)
Descriptors: Algorithms, Automatic Indexing, Bayesian Statistics, Classification
Peer reviewed Peer reviewed
Wolter, David G.; Earl, Robert W. – Psychometrika, 1972
Descriptors: Bayesian Statistics, Learning, Mathematical Models, Probability
Peer reviewed Peer reviewed
Geisser, Seymour; Kappenman, Russell F. – Psychometrika, 1971
Descriptors: Bayesian Statistics, Mathematics, Probability, Profiles
Peer reviewed Peer reviewed
Laughlin, James E. – Psychometrika, 1979
This paper details a Bayesian alternative to the use of least squares and equal weighting coefficients in regression. An equal weight prior distribution for the linear regression parameters is described with regard to the conditional normal regression model, and resulting posterior distributions for these parameters are detailed. (Author/CTM)
Descriptors: Bayesian Statistics, Multiple Regression Analysis, Simulation, Statistical Bias
Peer reviewed Peer reviewed
Lee, Sik-Yum – Psychometrika, 1981
Confirmatory factor analysis is considered from a Bayesian viewpoint, in which prior information concerning parameters is incorporated in the analysis. An interactive algorithm is developed to obtain the Bayesian estimates. A numerical example is presented. (Author/JKS)
Descriptors: Algorithms, Bayesian Statistics, Factor Analysis, Maximum Likelihood Statistics
Miller, Edward M. – Personnel, 1980
In general, candidates selected for employment will probably perform worse than estimated. Bayesian statistical methods may be useful in adjusting the estimates. (Author)
Descriptors: Bayesian Statistics, Decision Making, Personnel Selection, Statistical Analysis
Peer reviewed Peer reviewed
Tsutakawa, Robert K. – Journal of Educational Statistics, 1978
A Bayesian solution is presented for the Johnson-Neyman problem (whether or not the distance between two regression lines is statistically significant over a finite interval of the independent variable). (Author/CTM)
Descriptors: Bayesian Statistics, Regression (Statistics), Statistical Significance, Technical Reports
Peer reviewed Peer reviewed
Scheines, Richard; Hoijtink, Herbert; Boomsma, Anne – Psychometrika, 1999
Explains how the Gibbs sampler can be applied to obtain a sample from the posterior distribution over the parameters of a structural equation model. Presents statistics to use to summarize marginal posterior densities and model checks using posterior predictive p-values. (SLD)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Sampling, Structural Equation Models
Peer reviewed Peer reviewed
Zwick, Rebecca; Thayer, Dorothy T.; Lewis, Charles – Journal of Educational Measurement, 1999
Developed an empirical Bayes enhancement to Mantel-Haenszel (MH) analysis of differential item functioning (DIF) in which it is assumed that the MH statistics are normally distributed and that the prior distribution of underlying DIF parameters is also normal. (Author/SLD)
Descriptors: Bayesian Statistics, Item Bias, Statistical Distributions, Test Items
Peer reviewed Peer reviewed
Vos, Hans J. – Educational Research and Evaluation (An International Journal on Theory and Practice), 1997
Optimal sequential decision rules are proposed for adapting the appropriate amount of instruction to learning needs. The framework for the approach is derived from Bayesian decision theory and the assumption that three actions (master, partial master, and nonmaster) are open to the decision maker. (SLD)
Descriptors: Bayesian Statistics, Decision Making, Individual Differences, Needs Assessment
Peer reviewed Peer reviewed
Arminger, Gerhard; Muthen, Bengt O. – Psychometrika, 1998
Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variable as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The proposed estimation methods are illustrated by two simulation studies. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
van der Linden, Wim J.; Vos, Hans J. – Psychometrika, 1996
A Bayesian approach for simultaneous optimization of test-based decisions is presented using the example of a selection decision for a treatment followed by a mastery decision. A distinction is made between weak and strong rules, and conditions for monotonicity of optimal weak and strong rules are presented. (Author/SLD)
Descriptors: Bayesian Statistics, Decision Making, Scores, Selection
Peer reviewed Peer reviewed
Zwick, Rebecca; Thayer, Dorothy; Lewis, Charles – Journal of Educational and Behavioral Statistics, 2000
Studied a method for flagging differential item functioning (DIF) based on loss functions. Builds on earlier research that led to the development of an empirical Bayes enhancement to the Mantel-Haenszel DIF analysis. Tested the method through simulation and found its performance better than some commonly used DIF classification systems. (SLD)
Descriptors: Bayesian Statistics, Identification, Item Bias, Simulation
Peer reviewed Peer reviewed
Lee, Sik-Yum; Shi, Jian-Qing – Structural Equation Modeling, 2000
Extends the LISREL model to incorporate fixed covariates at both the measurement and the structural equations of the model, establishing a Bayesian procedure with conjugate type prior distributions. Illustrates the efficiency of the algorithm and presents a goodness of fit statistic for assessing the proposed model. (SLD)
Descriptors: Bayesian Statistics, Goodness of Fit, Structural Equation Models
Pages: 1  |  ...  |  103  |  104  |  105  |  106  |  107  |  108  |  109  |  110  |  111  |  ...  |  149