ERIC Number: EJ895136
Record Type: Journal
Publication Date: 2010
Pages: 41
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0027-3171
EISSN: N/A
Available Date: N/A
Assessing Mediational Models: Testing and Interval Estimation for Indirect Effects
Biesanz, Jeremy C.; Falk, Carl F.; Savalei, Victoria
Multivariate Behavioral Research, v45 n4 p661-701 2010
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron & Kenny, 1986; Sobel, 1982) have in recent years been supplemented by computationally intensive methods such as bootstrapping, the distribution of the product methods, and hierarchical Bayesian Markov chain Monte Carlo (MCMC) methods. These different approaches for assessing mediation are illustrated using data from Dunn, Biesanz, Human, and Finn (2007). However, little is known about how these methods perform relative to each other, particularly in more challenging situations, such as with data that are incomplete and/or nonnormal. This article presents an extensive Monte Carlo simulation evaluating a host of approaches for assessing mediation. We examine Type I error rates, power, and coverage. We study normal and nonnormal data as well as complete and incomplete data. In addition, we adapt a method, recently proposed in statistical literature, that does not rely on confidence intervals (CIs) to test the null hypothesis of no indirect effect. The results suggest that the new inferential method--the partial posterior "p" value--slightly outperforms existing ones in terms of maintaining Type I error rates while maximizing power, especially with incomplete data. Among confidence interval approaches, the bias-corrected accelerated (BC[subscript a]) bootstrapping approach often has inflated Type I error rates and inconsistent coverage and is "not" recommended; In contrast, the bootstrapped percentile confidence interval and the hierarchical Bayesian MCMC method perform best overall, maintaining Type I error rates, exhibiting reasonable power, and producing stable and accurate coverage rates. (Contains 3 figures, 13 tables, and 7 footnotes.)
Descriptors: Computation, Intervals, Models, Monte Carlo Methods, Markov Processes, Statistical Analysis, Error of Measurement, Bayesian Statistics
Psychology Press. Available from: Taylor & Francis, Ltd. 325 Chestnut Street Suite 800, Philadelphia, PA 19106. Tel: 800-354-1420; Fax: 215-625-2940; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A