NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ846698
Record Type: Journal
Publication Date: 2005
Pages: 20
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1436-4522
EISSN: N/A
Available Date: N/A
Adaptive Learning Resources Sequencing in Educational Hypermedia Systems
Karampiperis, Pythagoras; Sampson, Demetrios
Educational Technology & Society, v8 n4 p128-147 2005
Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have been reported in literature aiming to support the Adaptation Model design by providing AEHS designers direct guidance or semi-automatic mechanisms for making the design process less demanding, still it requires significant effort to overcome the problems of inconsistency, confluence and insufficiency, introduced by the use of rules. Due to the problems of inconsistency and insufficiency of the defined rule sets in the Adaptation Model, conceptual "holes" can be generated in the produced learning resource sequences (or learning paths). In this paper, we address the design problem of the Adaptation Model in AEHS proposing an alternative sequencing method that, instead of generating the learning path by populating a concept sequence with available learning resources based on pre-defined adaptation rules, it first generates all possible learning paths that match the learning goal in hand, and then, adaptively selects the desired one, based on the use of a decision model that estimates the suitability of learning resources for a targeted learner. In our simulations we compare the learning paths generated by the proposed methodology with ideal ones produced by a simulated perfect rule-based AEHS. The simulation results provide evidence that the proposed methodology can generate almost accurate learning paths avoiding the need for defining complex rule sets in the Adaptation Model of AEHS. (Contains 10 figures and 5 tables.)
International Forum of Educational Technology & Society. Athabasca University, School of Computing & Information Systems, 1 University Drive, Athabasca, AB T9S 3A3, Canada. Tel: 780-675-6812; Fax: 780-675-6973; Web site: http://www.ifets.info
Publication Type: Journal Articles; Reports - Evaluative
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A