NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ810616
Record Type: Journal
Publication Date: 2008-Sep
Pages: 9
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0006-8950
EISSN: N/A
Available Date: N/A
Perivascular Spaces--MRI Marker of Inflammatory Activity in the Brain?
Wuerfel, Jens; Haertle, Mareile; Waiczies, Helmar; Tysiak, Eva; Bechmann, Ingo; Wernecke, Klaus D.; Zipp, Frauke; Paul, Friedemann
Brain, v131 n9 p2332-2340 Sep 2008
The Virchow-Robin spaces (VRS), perivascular compartments surrounding small blood vessels as they penetrate the brain parenchyma, are increasingly recognized for their role in leucocyte trafficking as well as for their potential to modulate immune responses. In the present study, we investigated VRS numbers and volumes in different brain regions in 45 multiple sclerosis patients and 30 healthy controls of similar age and gender distribution, applying three different MRI sequence modalities (T[subscript 2]-weighted, T[subscript 1]-weighted and FLAIR). VRS were detected in comparable numbers in both multiple sclerosis patients and healthy individuals, indicating that perivascular compartments present on MRI are not a unique feature of multiple sclerosis. However, multiple sclerosis patients had significantly larger VRS volumes than healthy controls (P = 0.004). This finding was not explained by a significantly lower brain parenchymal fraction (BPF), resulting from a higher degree of atrophy, in the patient cohort. In a multiple linear regression analysis, age had a significant influence on VRS volumes in the control group but not in multiple sclerosis patients (P = 0.023 and P = 0.263, respectively). A subsequent prospective longitudinal substudy with monthly follow-up MRI over a period of up to 12 months in 18 patients revealed a significant increase in VRS volumes and counts accompanying the occurrence of contrast-enhancing lesions (CEL). At time points when blood-brain barrier (BBB) breakdown was indicated by the appearance of CEL, total VRS volumes and counts were significantly higher compared with preceding time points without CEL (P = 0.011 and P = 0.041, respectively), whereas a decrease thereafter was not statistically significant. Thus, our data points to an association of VRS with CEL as a sign for inflammation rather than with factors such as age, observed in healthy controls, and therefore suggests a role of VRS in inflammatory processes of the brain.
Oxford University Press. Great Clarendon Street, Oxford, OX2 6DP, UK. Tel: +44-1865-353907; Fax: +44-1865-353485; e-mail: jnls.cust.serv@oxfordjournals.org; Web site: http://brain.oxfordjournals.org/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A