ERIC Number: EJ749505
Record Type: Journal
Publication Date: 2007
Pages: 20
Abstractor: Author
ISBN: N/A
ISSN: ISSN-0013-1644
EISSN: N/A
Available Date: N/A
Interval Estimates of Multivariate Effect Sizes: Coverage and Interval Width Estimates under Variance Heterogeneity and Nonnormality
Hess, Melinda R.; Hogarty, Kristine Y.; Ferron, John M.; Kromrey, Jeffrey D.
Educational and Psychological Measurement, v67 n1 p21-40 2007
Monte Carlo methods were used to examine techniques for constructing confidence intervals around multivariate effect sizes. Using interval inversion and bootstrapping methods, confidence intervals were constructed around the standard estimate of Mahalanobis distance (D[superscript 2]), two bias-adjusted estimates of D[superscript 2], and Huberty's "I." Interval coverage and width were examined across conditions by adjusting sample size, number of variables, population effect size, population distribution shape, and the covariance structure. The accuracy and precision of the intervals varied considerably across methods and conditions; however, the interval inversion approach appears to be promising for D[superscript 2], whereas the percentile bootstrap approach is recommended for the other effect size measures. The results imply that it is possible to obtain fairly accurate coverage estimates for multivariate effect sizes. However, interval width estimates tended to be large and uninformative, suggesting that future efforts might focus on investigating design factors that facilitate more precise estimates of multivariate effect sizes. (Contains 3 figures and 3 tables.)
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: http://sagepub.com.bibliotheek.ehb.be
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A