ERIC Number: EJ745953
Record Type: Journal
Publication Date: 2006-Oct
Pages: 23
Abstractor: Author
ISBN: N/A
ISSN: ISSN-0033-295X
EISSN: N/A
Available Date: N/A
Locally Bayesian Learning with Applications to Retrospective Revaluation and Highlighting
Kruschke, John K.
Psychological Review, v113 n4 p677-699 Oct 2006
A scheme is described for locally Bayesian parameter updating in models structured as successions of component functions. The essential idea is to back-propagate the target data to interior modules, such that an interior component's target is the input to the next component that maximizes the probability of the next component's target. Each layer then does locally Bayesian learning. The approach assumes online trial-by-trial learning. The resulting parameter updating is not globally Bayesian but can better capture human behavior. The approach is implemented for an associative learning model that first maps inputs to attentionally filtered inputs and then maps attentionally filtered inputs to outputs. The Bayesian updating allows the associative model to exhibit retrospective revaluation effects such as backward blocking and unovershadowing, which have been challenging for associative learning models. The back-propagation of target values to attention allows the model to show trial-order effects, including highlighting and differences in magnitude of forward and backward blocking, which have been challenging for Bayesian learning models.
American Psychological Association. Journals Department, 750 First Street NE, Washington, DC 20002-4242. Tel: 800-374-2721; Tel: 202-336-5510; Fax: 202-336-5502; e-mail: order@apa.org; Web site: http://www.apa.org/publications.
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A