ERIC Number: EJ737242
Record Type: Journal
Publication Date: 2005
Pages: 31
Abstractor: Author
ISBN: N/A
ISSN: ISSN-1076-9986
EISSN: N/A
Available Date: N/A
Prediction in Multilevel Models
Afshartous, David; de Leeuw, Jan
Journal of Educational and Behavioral Statistics, v30 n2 p109-139 Sum 2005
Multilevel modeling is an increasingly popular technique for analyzing hierarchical data. This article addresses the problem of predicting a future observable y[subscript *j] in the jth group of a hierarchical data set. Three prediction rules are considered and several analytical results on the relative performance of these prediction rules are demonstrated. In addition, the prediction rules are assessed by means of a Monte Carlo study that extensively covers both the sample size and parameter space. Specifically, the sample size space concerns the various combinations of Level 1 (individual) and Level 2 (group) sample sizes, while the parameter space concerns different intraclass correlation values. The three prediction rules employ OLS, prior, and multilevel estimators for the Level 1 coefficients beta[subscript j]. The multilevel prediction rule performs the best across all design conditions, and the prior prediction rule degrades as the number of groups, J, increases. Finally, this article investigates the robustness of the multilevel prediction rule to misspecifications of the Level 2 model. (Contains 25 notes, 6 tables, and 11 figures.)
Descriptors: Prediction, Models, Modeling (Psychology), Monte Carlo Methods, Sample Size, Correlation, Computation
American Educational Research Association. 1230 17th St. NW, Washington, DC 20036-3078. Tel: 202-223-9485; Fax: 202-775-1824; e-mail: subscriptions@aera.net; Web site: http://www.aera.net.
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A