ERIC Number: EJ690016
Record Type: Journal
Publication Date: 2004-Aug
Pages: 23
Abstractor: Author
ISBN: N/A
ISSN: ISSN-0013-1644
EISSN: N/A
Available Date: N/A
A Comparison of Parametric and Nonparametric Approaches to Item Analysis for Multiple-Choice Tests
Lei, Pui-Wa; Dunbar, Stephen B.; Kolen, Michael J.
Educational and Psychological Measurement, v64 n4 p565-587 Aug 2004
This study compares the parametric multiple-choice model and the nonparametric kernel smoothing approach to estimating option characteristic functions (OCCs) using an empirical criterion, the stability of curve estimates over occasions that represents random error. The potential utility of graphical OCCs in item analysis was illustrated with selected items. The effect of increasing the smoothing parameter on the nonparametric model and the effect of small sample on both approaches were investigated. Differences between estimated curve values for between-model within-occasion, within-model between-occasion, and between-model between-occasion were evaluated. The between-model differences were minor in relation to the within-model stabilities, and the incremental difference attributable to model was smaller than that attributable to occasion. Either model leads to the same choice in item analysis.
Descriptors: Nonparametric Statistics, Multiple Choice Tests, Item Analysis, Item Response Theory, Comparative Analysis, Models
Sage Publications, 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243 (Toll Free); Fax: 800-583-2665 (Toll Free).
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A