ERIC Number: EJ1453648
Record Type: Journal
Publication Date: 2024-Dec
Pages: 40
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1560-4292
EISSN: EISSN-1560-4306
Available Date: N/A
Toward Asset-Based Instruction and Assessment in Artificial Intelligence in Education
International Journal of Artificial Intelligence in Education, v34 n4 p1559-1598 2024
The artificial intelligence in education (AIED) community has produced technologies that are widely used to support learning, teaching, assessment, and administration. This work has successfully enhanced test scores, course grades, skill acquisition, comprehension, engagement, and related outcomes. However, the prevailing approach to adaptive and personalized learning has two main steps. First, the process involves detecting the areas of knowledge and competencies where students are deficient. This process also identifies when or how a student is considered "at risk" or in some way "lacking." Second, the approach involves providing timely, individualized assistance to address these deficiencies. However, a considerable body of research outside our field has established that such "deficit" framing, by itself, leads to reactive and less productive strategies. In deficit-based frameworks, powerful student strengths, skills, and schemas--their assets--are not explicitly leveraged. In this paper, we outline an asset-based paradigm for AIED research and development, proposing principles for our community to build upon learners' rich funds of knowledge. We propose that embracing asset-based approaches will empower the AIED community (e.g., educators, developers, and researchers) to reach broader populations of learners. We discuss the potentially transformative role this approach could play in supporting learning and personal development for all learners, particularly for students who are historically underserved, marginalized, and "deficit-ized."
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Individualized Instruction, At Risk Students, Student Characteristics, Academic Ability, Educational Research
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link-springer-com.bibliotheek.ehb.be/
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A