ERIC Number: EJ1431549
Record Type: Journal
Publication Date: 2024
Pages: 16
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1070-5511
EISSN: EISSN-1532-8007
Available Date: N/A
Label Switching in Latent Class Analysis: Accuracy of Classification, Parameter Estimates, and Confidence Intervals
Structural Equation Modeling: A Multidisciplinary Journal, v31 n2 p217-232 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage rates of confidence intervals (CIs) through Monte Carlo simulation studies. We address the issue of label switching with a distance-based relabeling approach and introduce an index to measure separation among latent classes. Our results show that classification accuracy, parameter estimation accuracy, and CI coverage rates are primarily influenced by class separation and the number of indicators used for LCA. We recommend using a large sample size to mitigate the effects of tiny class sizes. Additionally, the study finds that the parametric bootstrap CIs perform comparably well or better when compared with the CIs based on the standard maximum likelihood method.
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research, Sampling, Statistical Inference, Accuracy, Bayesian Statistics
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A