NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1374252
Record Type: Journal
Publication Date: 2023-Apr
Pages: 13
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1389-4986
EISSN: EISSN-1573-6695
Available Date: N/A
Model Evaluation in the Presence of Categorical Data: Bayesian Model Checking as an Alternative to Traditional Methods
Bonifay, Wes; Depaoli, Sarah
Prevention Science, v24 n3 p467-479 Apr 2023
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard goodness-of-fit statistics. Limited-information fit statistics and bootstrapping procedures offer valuable solutions to this problem, but they present an additional concern in their strict reliance on the (potentially misleading) observed data. To address both of these issues, we demonstrate the Bayesian model checking technique, which yields insightful, useful, and comprehensive evaluations of specific properties of a given model. We illustrate this technique using item response data from a patient-reported psychopathology screening questionnaire, and we provide annotated R code to promote dissemination of this informative method in other prevention science modeling scenarios. [For the corresponding grantee submission, see ED618144.]
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link-springer-com.bibliotheek.ehb.be/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305D210032
Author Affiliations: N/A