ERIC Number: EJ1373697
Record Type: Journal
Publication Date: 2023-Apr
Pages: 30
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: EISSN-1573-7608
Available Date: N/A
Understanding Self-Directed Learning Behavior towards Digital Competence among Business Research Students: SEM-Neural Analysis
Education and Information Technologies, v28 n4 p4173-4202 Apr 2023
Digital competence among business research students is heralded as a pragmatic expression of the quality of research output and effective collaboration. Self-Directed Learning (SDL) is a resourceful personal and professional development technique, yet there is minimal research on SDL for digital competence among business scholars. This study investigates the behavioral aspects of business research students to engage in the SDL mechanism for digital competence. A hypothesis-based research framework was outlined through Perceived Usefulness (PU), Facilitating Conditions (FC), Self-Directed Learning Readiness (SDLR), Personal Innovativeness (PI), Computer Self-Efficacy (CSE), and Behavioral Intention (BI). Data were collected through a quantitative survey and then analyzed by the novel multi-analytical approach, i.e., Partial Least Squares Structural Equation Modelling (PLS-SEM) to test hypotheses, Artificial Neural Network (ANN) to manage the non-linear associations in the model and to rank the predictors, and Importance Performance Map Analysis (IPMA) to assess the variables through importance and performance chart. Data analysis showed that all variables were significant predictors of SDL behavior where PI and CSE were prominent model antecedents. The study's contributions towards knowledge included the practical implications for boosting digital competence among young researchers, providing the in-depth analysis of antecedents of SDL behavior, and validation of multi-analytical tools in technology integration literature.
Descriptors: Technological Literacy, Business, Research, College Students, Independent Study, Value Judgment, Affordances, Readiness, Innovation, Self Efficacy, Intention, Predictor Variables, Student Behavior
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link-springer-com.bibliotheek.ehb.be/
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A