NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1361986
Record Type: Journal
Publication Date: 2020
Pages: 20
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-2398-5348
EISSN: EISSN-2398-5356
Available Date: N/A
Scale up Predictive Models for Early Detection of At-Risk Students: A Feasibility Study
Cui, Ying; Chen, Fu; Shiri, Ali
Information and Learning Sciences, v121 n3-4 p97-116 2020
Purpose: This study aims to investigate the feasibility of developing general predictive models for using the learning management system (LMS) data to predict student performances in various courses. The authors focused on examining three practical but important questions: are there a common set of student activity variables that predict student performance in different courses? Which machine-learning classifiers tend to perform consistently well across different courses? Can the authors develop a general model for use in multiple courses to predict student performance based on LMS data? Design/methodology/approach: Three mandatory undergraduate courses with large class sizes were selected from three different faculties at a large Western Canadian University, namely, faculties of science, engineering and education. Course-specific models for these three courses were built and compared using data from two semesters, one for model building and the other for generalizability testing. Findings: The investigation has led the authors to conclude that it is not desirable to develop a general model in predicting course failure across variable courses. However, for the science course, the predictive model, which was built on data from one semester, was able to identify about 70% of students who failed the course and 70% of students who passed the course in another semester with only LMS data extracted from the first four weeks. Originality/value: The results of this study are promising as they show the usability of LMS for early prediction of student course failure, which has the potential to provide students with timely feedback and support in higher education institutions.
Emerald Publishing Limited. Howard House, Wagon Lane, Bingley, West Yorkshire, BD16 1WA, UK. Tel: +44-1274-777700; Fax: +44-1274-785201; e-mail: emerald@emeraldinsight.com; Web site: http://www.emerald.com/insight
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Canada
Grant or Contract Numbers: N/A
Author Affiliations: N/A