NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1361263
Record Type: Journal
Publication Date: 2022
Pages: 19
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0022-0655
EISSN: EISSN-1745-3984
Available Date: N/A
Two IRT Characteristic Curve Linking Methods Weighted by Information
Wang, Shaojie; Zhang, Minqiang; Lee, Won-Chan; Huang, Feifei; Li, Zonglong; Li, Yixing; Yu, Sufang
Journal of Educational Measurement, v59 n4 p423-441 Win 2022
Traditional IRT characteristic curve linking methods ignore parameter estimation errors, which may undermine the accuracy of estimated linking constants. Two new linking methods are proposed that take into account parameter estimation errors. The item- (IWCC) and test-information-weighted characteristic curve (TWCC) methods employ weighting components in the loss function from traditional methods by their corresponding item and test information, respectively. Monte Carlo simulation was conducted to evaluate the performances of the new linking methods and compare them with traditional ones. Ability difference between linking groups, sample size, and test length were manipulated under the common-item nonequivalent groups design. Results showed that the two information-weighted characteristic curve methods outperformed traditional methods, in general. TWCC was found to be more accurate and stable than IWCC. A pseudo-form pseudo-group analysis was also performed, and similar results were observed. Finally, guidelines for practice and future directions are discussed.
Wiley. Available from: John Wiley & Sons, Inc. 111 River Street, Hoboken, NJ 07030. Tel: 800-835-6770; e-mail: cs-journals@wiley.com; Web site: https://www-wiley-com.bibliotheek.ehb.be/en-us
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A