NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1360928
Record Type: Journal
Publication Date: 2022
Pages: 11
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-2056-4880
EISSN: N/A
Available Date: N/A
A Data Mining Approach Using Machine Learning Algorithms For Early Detection of Low-Performing Students
International Journal of Information and Learning Technology, v39 n2 p122-132 2022
Purpose: The purpose of the study is to build predictive models for early detection of low-performing students and examine the factors that influence massive open online courses students' performance. Design/methodology/approach: For the first step, the author performed exploratory data analysis to analyze the dataset. The process was then followed by data pre-processing and feature engineering (Step 2). Next, the author conducted data modelling and prediction (Step 3). Finally, the performance of the developed models was evaluated (Step 4). Findings: The paper found that the decision trees algorithm outperformed other machine learning algorithms. The study also confirms the significant effect of the academic background and virtual learning environment (VLE) interactions feature categories to academic performance. The accuracy enhancement is 17.66% for decision trees classifier, 3.49% for logistic regression classifier and 4.89% for neural networks classifier. Based on the results of "CorrelationAttributeEval" technique with the use of a ranker search method, the author found that the "assessment_score" and "sum_click" features are more important among academic background and VLE interactions feature categories for the classification analysis in predicting students' academic performance. Originality/value: The work meets the originality requirement.
Emerald Publishing Limited. Howard House, Wagon Lane, Bingley, West Yorkshire, BD16 1WA, UK. Tel: +44-1274-777700; Fax: +44-1274-785201; e-mail: emerald@emeraldinsight.com; Web site: http://www.emerald.com/insight
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A