NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1359069
Record Type: Journal
Publication Date: 2022
Pages: 17
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-2469-9896
Available Date: N/A
Using the Conceptual Survey of Electricity and Magnetism to Investigate Progression in Student Understanding from Introductory to Advanced Levels
Physical Review Physics Education Research, v18 n2 Article 020114 Jul-Dec 2022
The Conceptual Survey of Electricity and Magnetism (CSEM) is a multiple-choice survey that contains a variety of electricity and magnetism concepts from Coulomb's law to Faraday's law at the level of introductory physics used to help inform instructors of student mastery of those concepts. Prior studies suggest that many concepts on the survey are challenging for introductory physics students and the average student scores after traditional instruction are low. The research presented here investigates the progression in student understanding on the CSEM. We compare the performance of students in introductory and advanced level physics courses to understand the evolution of student understanding of concepts covered in the CSEM after traditional lecture-based instruction. We find that on all CSEM questions on which less than 50% of the introductory physics students answered a question correctly after instruction, less than two-thirds of the upper-level undergraduate students provided the correct response after traditional instruction. We also analyzed the CSEM data from graduate students for benchmarking purposes. We discuss the CSEM questions that remain challenging and the common alternative conceptions among upper-level students. The findings presented here at least partly point to the fact that traditional instruction in upper-level courses which typically focuses primarily on quantitative problem solving and incentivizes use of algorithmic approaches is not effective for helping students develop a solid understanding of these concepts. However, it is important for helping students integrate conceptual and quantitative aspects of learning in order to build a robust knowledge structure of basic concepts in electricity and magnetism.
American Physical Society. One Physics Ellipse 4th Floor, College Park, MD 20740-3844. Tel: 301-209-3200; Fax: 301-209-0865; e-mail: assocpub@aps.org; Web site: http://prst-per.aps.org
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF), Division of Physics (PHY)
Authoring Institution: N/A
Grant or Contract Numbers: PHY1806691
Author Affiliations: N/A