NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: EJ1353911
Record Type: Journal
Publication Date: 2022-Dec
Pages: 22
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0013-1644
EISSN: EISSN-1552-3888
Available Date: N/A
Assessing Ability Recovery of the Sequential IRT Model with Unstructured Multiple-Attempt Data
Ziying Li; A. Corinne Huggins-Manley; Walter L. Leite; M. David Miller; Eric A. Wright
Educational and Psychological Measurement, v82 n6 p1203-1224 Dec 2022
The unstructured multiple-attempt (MA) item response data in virtual learning environments (VLEs) are often from student-selected assessment data sets, which include missing data, single-attempt responses, multiple-attempt responses, and unknown growth ability across attempts, leading to a complex and complicated scenario for using this kind of data set as a whole in the practice of educational measurement. It is critical that methods be available for measuring ability from VLE data to improve VLE systems, monitor student progress in instructional settings, and conduct educational research. The purpose of this study is to explore the ability recovery of the multidimensional sequential 2-PL IRT model in unstructured MA data from VLEs. We conduct a simulation study to evaluate the effects of the magnitude of ability growth and the proportion of students who make two attempts, as well as the moderated effects of sample size, test length, and missingness, on the bias and root mean square error of ability estimates. Results show that the model poses promise for evaluating ability in unstructured VLE data, but that some data conditions can result in biased ability estimates.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: https://sagepub-com.bibliotheek.ehb.be
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305C160004
Author Affiliations: N/A