NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1338624
Record Type: Journal
Publication Date: 2022-May
Pages: 23
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0018-9359
EISSN: N/A
Available Date: N/A
Building a Quantum Engineering Undergraduate Program
Asfaw, Abraham; Blais, Alexandre; Brown, Kenneth R.; Candelaria, Jonathan; Cantwell, Christopher; Carr, Lincoln D.; Combes, Joshua; Debroy, Dripto M.; Donohue, John M.; Economou, Sophia E.; Edwards, Emily; Fox, Michael F. J.; Girvin, Steven M.; Ho, Alan; Hurst, Hilary M.; Jacob, Zubin; Johnson, Blake R.; Johnston-Halperin, Ezekiel; Joynt, Robert; Kapit, Eliot; Klein-Seetharaman, Judith; Laforest, Martin; Lewandowski, H. J.; Lynn, Theresa W.; McRae, Corey Rae H.; Merzbacher, Celia; Michalakis, Spyridon; Narang, Prineha; Oliver, William D.; Palsberg, Jens; Pappas, David P.; Raymer, Michael G.; Reilly, David J.; Saffman, Mark; Searles, Thomas A.; Shapiro, Jeffrey H.; Singh, Chandralekha
IEEE Transactions on Education, v65 n2 p220-242 May 2022
Contribution: A roadmap is provided for building a quantum engineering education program to satisfy U.S. national and international workforce needs. Background: The rapidly growing quantum information science and engineering (QISE) industry will require both quantum-aware and quantum-proficient engineers at the bachelor's level. Research Question: What is the best way to provide a flexible framework that can be tailored for the full academic ecosystem? Methodology: A workshop of 480 QISE researchers from across academia, government, industry, and national laboratories was convened to draw on best practices; representative authors developed this roadmap. Findings: 1) For quantum-aware engineers, design of a first quantum engineering course, accessible to all STEM students, is described; 2) for the education and training of quantum-proficient engineers, both a quantum engineering minor accessible to all STEM majors, and a quantum track directly integrated into individual engineering majors are detailed, requiring only three to four newly developed courses complementing existing STEM classes; 3) a conceptual QISE course for implementation at any postsecondary institution, including community colleges and military schools, is delineated; 4) QISE presents extraordinary opportunities to work toward rectifying issues of inclusivity and equity that continue to be pervasive within engineering. A plan to do so is presented, as well as how quantum engineering education offers an excellent set of education research opportunities; and 5) a hands-on training plan on quantum hardware is outlined, a key component of any quantum engineering program, with a variety of technologies, including optics, atoms and ions, cryogenic and solid-state technologies, nanofabrication, and control and readout electronics.
Institute of Electrical and Electronics Engineers, Inc. 445 Hoes Lane, Piscataway, NJ 08854. Tel: 732-981-0060; Web site: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=13
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education; Two Year Colleges
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF); Office of Science (DOE), Co-design Center for Quantum Advantage (C2QA); Office of Science (DOE), Superconducting Quantum Materials and Systems Center (SQMS)
Authoring Institution: N/A
Grant or Contract Numbers: EEC2110432; OMA1936835; DESC0012704; 2040581; OMA2016244; DEAC0207CH11359; PHY1733907; NSF1941583; 2016136
Author Affiliations: N/A