ERIC Number: EJ1325745
Record Type: Journal
Publication Date: 2022-Feb
Pages: 34
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0049-1241
EISSN: N/A
Available Date: N/A
General Marginal-Free Association Indices for Contingency Tables: From the Altham Index to the Intrinsic Association Coefficient
Sociological Methods & Research, v51 n1 p203-236 Feb 2022
Notwithstanding a large body of literature on log-linear models and odds ratios, no general marginal-free index of the association in a contingency table has gained a wide acceptance. Building on a framework developed by L. A. Goodman, we put into light the direct links between odds ratios, the Altham index, the intrinsic association coefficient, and coefficients in log-multiplicative models including Unidiff and row-column association models. We devise a normalized version of the latter coefficient varying between 0 and 1, which offers a simpler interpretation than existing indices similar to the correlation coefficient. We illustrate with the case of educational and socioeconomic homogamy among 149 European regions how this index can be used either alone in a non- or semiparametric approach or combined with models, and how it can protect against incorrect conclusions based on models which rely on strong assumptions to summarize the strength of association as a single parameter.
Descriptors: Statistical Analysis, Tables (Data), Models, Foreign Countries, Nonparametric Statistics, Marriage, Socioeconomic Status, Educational Attainment, Geographic Regions
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: http://sagepub.com.bibliotheek.ehb.be
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Europe
Grant or Contract Numbers: N/A
Author Affiliations: N/A