NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1325387
Record Type: Journal
Publication Date: 2021
Pages: 15
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-1929-7750
EISSN: N/A
Available Date: N/A
Predicting University Students' Exam Performance Using a Model-Based Adaptive Fact-Learning System
Journal of Learning Analytics, v8 n3 p155-169 2021
Modern educational technology has the potential to support students to use their study time more effectively. Learning analytics can indicate relevant individual differences between learners, which adaptive learning systems can use to tailor the learning experience to individual learners. For fact learning, cognitive models of human memory are well suited to tracing learners' acquisition and forgetting of knowledge over time. Such models have shown great promise in controlled laboratory studies. To work in realistic educational settings, however, they need to be easy to deploy and their adaptive components should be based on individual differences relevant to the educational context and outcomes. Here, we focus on predicting university students' exam performance using a model-based adaptive fact-learning system. The data presented here indicate that the system provides tangible benefits to students in naturalistic settings. The model's estimate of a learner's rate of forgetting predicts overall grades and performance on individual exam questions. This encouraging case study highlights the value of model-based adaptive fact-learning systems in classrooms.
Society for Learning Analytics Research. 121 Pointe Marsan, Beaumont, AB T4X 0A2, Canada. Tel: +61-429-920-838; e-mail: info@solaresearch.org; Web site: https://learning-analytics.info/index.php/JLA/index
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A