ERIC Number: EJ1308766
Record Type: Journal
Publication Date: 2021-Sep
Pages: 32
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: N/A
Available Date: N/A
An Enhanced Genetic Algorithm for Solving Learning Path Adaptation Problem
Benmesbah, Ouissem; Lamia, Mahnane; Hafidi, Mohamed
Education and Information Technologies, v26 n5 p5237-5268 Sep 2021
Recently, the field of adaptive learning has significantly attracted researchers' interest. Learning path adaptation problem (LPA) is one of the most challenging problems within this field. It is also a well-known combinatorial optimization problem, its main target is the knowledge resources sequencing offered to a specific learner with a specific context. The learning path candidate solutions can be only approximated as the LPA problem belongs to NP-hard problems and heuristics and meta-heuristics are usually used to solve it. In this direction, this paper summarizes existing works and presents an innovative approach modeled as an objective optimization problem, and an improved Genetic algorithm (GA) is proposed to deal with it. Our contribution does not only reduce the search space size and increase search efficiency, but it is also more explicit in finding the best composition of learning objects for a given learner. Besides the proposed GA, introduces an archive-based bag-of-operators mechanism to tackle two well-known standards GA drawbacks. The simulation results show that the proposed method makes a significant improvement compared to a well-known evolutionary approach, which is the PSO algorithm, and a random search approach. In addition, an empirical experiment is conducted and the results are very encouraging.
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link-springer-com.bibliotheek.ehb.be/
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A