NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1297810
Record Type: Journal
Publication Date: 2021-May
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-1492-3831
EISSN: N/A
Available Date: N/A
Investigation of Emerging Trends in the E-Learning Field Using Latent Dirichlet Allocation
Gurcan, Fatih; Ozyurt, Ozcan; Cagiltay, Nergiz Ercil
International Review of Research in Open and Distributed Learning, v22 n2 p1-18 May 2021
E-learning studies are becoming very important today as they provide alternatives and support to all types of teaching and learning programs. The effect of the COVID-19 pandemic on educational systems has further increased the significance of e-learning. Accordingly, gaining a full understanding of the general topics and trends in e-learning studies is critical for a deeper comprehension of the field. There are many studies that provide such a picture of the e-learning field, but the limitation is that they do not examine the field as a whole. This study aimed to investigate the emerging trends in the e-learning field by implementing a topic modeling analysis based on latent Dirichlet allocation (LDA) on 41,925 peer-reviewed journal articles published between 2000 and 2019. The analysis revealed 16 topics reflecting emerging trends and developments in the e-learning field. Among these, the topics "MOOC," "learning assessment," and "e-learning systems" were found to be key topics in the field, with a consistently high volume. In addition, the topics of "learning algorithms," "learning factors," and "adaptive learning" were observed to have the highest overall acceleration, with the first two identified as having a higher acceleration in recent years. Going by these results, it is concluded that the next decade of e-learning studies will focus on learning factors and algorithms, which will possibly create a baseline for more individualized and adaptive mobile platforms. In other words, after a certain maturity level is reached by better understanding the learning process through these identified learning factors and algorithms, the next generation of e-learning systems will be built on individualized and adaptive learning environments. These insights could be useful for e-learning communities to improve their research efforts and their applications in the field accordingly.
Athabasca University Press. 1200, 10011-109 Street, Edmonton, AB T5J 3S8, Canada. Tel: 780-497-3412; Fax: 780-421-3298; e-mail: irrodl@athabascau.ca; Web site: http://www.irrodl.org
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A