NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1293976
Record Type: Journal
Publication Date: 2021-Jun
Pages: 28
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0013-1644
EISSN: N/A
Available Date: N/A
The Poor Fit of Model Fit for Selecting Number of Factors in Exploratory Factor Analysis for Scale Evaluation
Montoya, Amanda K.; Edwards, Michael C.
Educational and Psychological Measurement, v81 n3 p413-440 Jun 2021
Model fit indices are being increasingly recommended and used to select the number of factors in an exploratory factor analysis. Growing evidence suggests that the recommended cutoff values for common model fit indices are not appropriate for use in an exploratory factor analysis context. A particularly prominent problem in scale evaluation is the ubiquity of correlated residuals and imperfect model specification. Our research focuses on a scale evaluation context and the performance of four standard model fit indices: root mean square error of approximate (RMSEA), standardized root mean square residual (SRMR), comparative fit index (CFI), and Tucker-Lewis index (TLI), and two equivalence test-based model fit indices: RMSEAt and CFIt. We use Monte Carlo simulation to generate and analyze data based on a substantive example using the positive and negative affective schedule (N = 1,000). We systematically vary the number and magnitude of correlated residuals as well as nonspecific misspecification, to evaluate the impact on model fit indices in fitting a two-factor exploratory factor analysis. Our results show that all fit indices, except SRMR, are overly sensitive to correlated residuals and nonspecific error, resulting in solutions that are overfactored. SRMR performed well, consistently selecting the correct number of factors; however, previous research suggests it does not perform well with categorical data. In general, we do not recommend using model fit indices to select number of factors in a scale evaluation framework.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: http://sagepub.com.bibliotheek.ehb.be
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: N/A
Grant or Contract Numbers: DGE1343012
Author Affiliations: N/A