NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1280091
Record Type: Journal
Publication Date: 2020
Pages: 17
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1539-3100
EISSN: N/A
Available Date: N/A
An Effective Prediction Model for Online Course Dropout Rate
International Journal of Distance Education Technologies, v18 n4 Article 6 2020
Due to tremendous reception on digital learning platforms, many online users tend to register for online courses in MOOC offered by many prestigious universities all over the world and gain a lot on cutting edge technologies in niche courses. As the reception of online courses is increasing on one side, there have been huge dropouts of participants in the online courses causing serious problems for the course owners and other MOOC administrators. Hence, it is deemed necessary to find out the root causes of course dropouts and need to prepare a workable solution to prevent that outcome in the future. In this connection, the authors made use of three machine learning algorithms such as support vector machine, random forest, and conditional random fields. The huge samples of datasets were downloaded from the Open University of China, that is, almost 7K student profiles were extracted for the empirical analysis. The datasets were loaded into a confusion matrix and analyzed for the accuracy, precision, recall, and f-score of the model.
IGI Global. 701 East Chocolate Avenue, Hershey, PA 17033. Tel: 866-342-6657; Tel: 717-533-8845; Fax: 717-533-8661; Fax: 717-533-7115; e-mail: journals@igi-global.com; Web site: https://www.igi-global.com/journals/
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: China
Grant or Contract Numbers: N/A
Author Affiliations: N/A