ERIC Number: EJ1271985
Record Type: Journal
Publication Date: 2020-Oct
Pages: 23
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1560-4292
EISSN: N/A
Available Date: N/A
Utilizing Game Analytics to Inform and Validate Digital Game-Based Assessment with Evidence-Centered Game Design: A Case Study
Chen, Fu; Cui, Ying; Chu, Man-Wai
International Journal of Artificial Intelligence in Education, v30 n3 p481-503 Oct 2020
The purpose of this case study is to demonstrate how to utilize machine learning approaches to analyze student process data for validating and informing digital game-based assessments (DGBAs) with an evidence-centered game design (ECgD). The first analysis was conducted to examine whether students' mastery of the overall skill required by the game can be well predicted by task-related behavioral features and if the selected key features map onto the evidence model of the ECgD. Specifically, we extracted 27 behavioral features as the indicators of students' gameplay activities from the evidence trace files and modelled them using a machine learning algorithm--support vector machine with recursive feature elimination--to identify the key features for prediction. The key features were in turn used to predict students' mastery of the overall skill. Results showed that students' retry attempts on two assessment tasks were found to be most influential for prediction with a moderate to high training and testing accuracy. The second analysis was conducted to examine whether the number of learning opportunities is sufficient for evaluating students' mastery of the overall skill as well as determine the optimal number of learning opportunities for evaluation. The approach of long short-term memory networks was used to model students' time-series behavioral features across multiple learning opportunities for predicting their acquisition of the overall skill. Results suggested that five learning opportunities were a good balance between evaluation accuracy and practical feasibility, and they were sufficient for evaluating students' mastery of the overall skill given the DGGA tasks.
Descriptors: Game Based Learning, Learning Analytics, Design, Evidence Based Practice, Artificial Intelligence, Man Machine Systems, Mastery Learning, Games, Prediction, Accuracy, Task Analysis
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link-springer-com.bibliotheek.ehb.be/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A