NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1267907
Record Type: Journal
Publication Date: 2020
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-2155-6849
EISSN: N/A
Available Date: N/A
Cognitive Modeling of Learning Using Big Data from a Science-Based Game Development Environment
International Journal of Game-Based Learning, v10 n4 Article 2 p22-39 2020
The purpose of this study was to identify the underlying cognitive attributes used during the design and development of science-based serious educational games. Study methods rely on a modification of cognitive diagnostics, item response theory, and Bayesian estimation with traditional statistical techniques such as factor analysis and model fit analysis to examine the data and model structure. A computational model of the cognitive processing using an artificial neural network (ANN) allowed for examination of underlying mechanisms of cognition from a server-side data set and a 21st century skills assessment. ANN results indicate that the model correctly predicts successful completion of science-based serious educational game (SEG) design tasks related to 21st century skills 86% of the time and correctly predicts failure to complete SEG design tasks related to 21st century skills 78% of the time. The model also reveals the relative importance of each particular cognitive attribute within the 21st century skills framework.
IGI Global. 701 East Chocolate Avenue, Hershey, PA 17033. Tel: 866-342-6657; Tel: 717-533-8845; Fax: 717-533-8661; Fax: 717-533-7115; e-mail: journals@igi-global.com; Web site: https://www.igi-global.com/journals/
Publication Type: Journal Articles; Reports - Research
Education Level: High Schools; Secondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A