ERIC Number: EJ1263793
Record Type: Journal
Publication Date: 2020-Oct
Pages: 23
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0013-1644
EISSN: N/A
Available Date: N/A
Evaluating the Performances of Missing Data Handling Methods in Ability Estimation from Sparse Data
Xiao, Jiaying; Bulut, Okan
Educational and Psychological Measurement, v80 n5 p932-954 Oct 2020
Large amounts of missing data could distort item parameter estimation and lead to biased ability estimates in educational assessments. Therefore, missing responses should be handled properly before estimating any parameters. In this study, two Monte Carlo simulation studies were conducted to compare the performance of four methods in handling missing data when estimating ability parameters. The methods were full-information maximum likelihood (FIML), zero replacement, and multiple imputation with chain equations utilizing classification and regression trees (MICE-CART) and random forest imputation (MICE-RFI). For the two imputation methods, missing responses were considered as a valid response category to enhance the accuracy of imputations. Bias, root mean square error, and the correlation between true ability parameters and estimated ability parameters were used to evaluate the accuracy of ability estimates for each method. Results indicated that FIML outperformed the other methods under most conditions. Zero replacement yielded accurate ability estimates when missing proportions were very high. The performances of MICE-CART and MICE-RFI were quite similar but these two methods appeared to be affected differently by the missing data mechanism. As the number of items increased and missing proportions decreased, all the methods performed better. In addition, the information on missing data could improve the performance of MICE-RFI and MICE-CART when the data set is sparse and the missing data mechanism is missing at random.
Descriptors: Data, Computation, Ability, Maximum Likelihood Statistics, Regression (Statistics), Statistical Analysis, Accuracy, Educational Testing, Item Response Theory
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: http://sagepub.com.bibliotheek.ehb.be
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A