NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1182252
Record Type: Journal
Publication Date: 2016
Pages: 24
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-2196-0739
EISSN: N/A
Available Date: N/A
Causal Inference with Large-Scale Assessments in Education from a Bayesian Perspective: A Review and Synthesis
Kaplan, David
Large-scale Assessments in Education, v4 Article 7 2016
This paper reviews recent research on causal inference with large-scale assessments in education from a Bayesian perspective. I begin by adopting the potential outcomes model of Rubin ("J Educ Psychol" 66:688-701, 1974) as a framework for causal inference that I argue is appropriate with large-scale educational assessments. I then discuss the elements of Bayesian inference arguing that methods and models of causal inference can benefit from the Bayesian approach to quantifying uncertainty. Next I outline one method of causal inference that I believe is fruitful for addressing causal questions with large-scale educational assessments within the potential outcomes framework--namely, propensity score analysis. I then discuss the quantification of uncertainty in propensity score analysis through a Bayesian approach. Next, I discuss a series of necessary conditions for addressing causal questions with large-scale educational assessments. The paper closes with a discussion of the implications for the design of large-scale educational assessments when the goal is in asking causal questions and warranting causal claims.
Springer. Available from: Springer Nature. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail: customerservice@springernature.com; Web site: https://link-springer-com.bibliotheek.ehb.be/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A