NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1030080
Record Type: Journal
Publication Date: 2014-Jun
Pages: 32
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0023-8333
EISSN: N/A
Available Date: N/A
A Role for Chunk Formation in Statistical Learning of Second Language Syntax
Hamrick, Phillip
Language Learning, v64 n2 p247-278 Jun 2014
Humans are remarkably sensitive to the statistical structure of language. However, different mechanisms have been proposed to account for such statistical sensitivities. The present study compared adult learning of syntax and the ability of two models of statistical learning to simulate human performance: Simple Recurrent Networks, which learn by predictive computation, and PARSER, which learns chunks as a byproduct of general principles of associative learning and memory. In the first stage, a semiartificial language paradigm was used to gather human data. In the second stage, a simulation paradigm was then used to compare the patterns of performance of the SRN and PARSER. After the human adults and the computational models were trained on sentences from the semiartificial language with probabilistic syntax, their learning outcomes were compared. Neither model was able to fully reproduce the human data, which may indicate less robust statistical learning effects in adults; however, PARSER was able to simulate more of the adult learning data than the SRN, suggesting a possible role for chunk formation in early phases of adult learning of second language syntax.
Wiley-Blackwell. 350 Main Street, Malden, MA 02148. Tel: 800-835-6770; Tel: 781-388-8598; Fax: 781-388-8232; e-mail: cs-journals@wiley.com; Web site: http://www.wiley.com.bibliotheek.ehb.be/WileyCDA/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A