NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: ED671435
Record Type: Non-Journal
Publication Date: 2018
Pages: 49
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Available Date: 0000-00-00
Causal Inference: A Missing Data Perspective
Peng Ding1; Fan Li2
Grantee Submission
Inferring causal effects of treatments is a central goal in many disciplines. The potential outcomes framework is a main statistical approach to causal inference, in which a causal effect is defined as a comparison of the potential outcomes of the same units under different treatment conditions. Because for each unit at most one of the potential outcomes is observed and the rest are missing, causal inference is inherently a missing data problem. Indeed, there is a close analogy in the terminology and the inferential framework between causal inference and missing data. Despite the intrinsic connection between the two subjects, statistical analyses of causal inference and missing data also have marked differences in aims, settings and methods. This article provides a systematic review of causal inference from the missing data perspective. Focusing on ignorable treatment assignment mechanisms, we discuss a wide range of causal inference methods that have analogues in missing data analysis, such as imputation, inverse probability weighting and doubly-robust methods. Under each of the three modes of inference--Frequentist, Bayesian, and Fisherian randomization--we present the general structure of inference for both finite-sample and superpopulation estimands, and illustrate via specific examples. We identify open questions to motivate more research to bridge the two fields. [This paper was published in "Statistical Science" v33 n2 2018.]
Publication Type: Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED); National Science Foundation (NSF), Division of Social and Economic Sciences (SES)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305D150040; 1424688
Department of Education Funded: Yes