ERIC Number: ED631483
Record Type: Non-Journal
Publication Date: 2022
Pages: 126
Abstractor: As Provided
ISBN: 979-8-3684-8202-6
ISSN: N/A
EISSN: N/A
Available Date: N/A
Model Selection Posterior Predictive Model Checking via Limited-Information Indices for Bayesian Diagnostic Classification Modeling
Jihong Zhang
ProQuest LLC, Ph.D. Dissertation, The University of Iowa
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model evaluation tool, which allows researchers to detect Q-matrix misspecification. However, model selection methods using posterior predictive checking (PPC) for Bayesian DCM are not well investigated. Thus, this research aims to propose a novel model selection approach using posterior predictive checking with limited-information statistics for selecting the correct Q-matrix. A simulation study was conducted to examine the performance of the proposed method. Furthermore, an empirical example was provided to illustrate how it can be used in real scenarios. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com.bibliotheek.ehb.be/en-US/products/dissertations/individuals.shtml.]
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification, Prediction, Evaluation Methods, Matrices, Simulation
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com.bibliotheek.ehb.be/en-US/products/dissertations/individuals.shtml
Related Records: EJ1455105
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A