ERIC Number: ED628396
Record Type: Non-Journal
Publication Date: 2021
Pages: 7
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Available Date: N/A
The Automated Model of Comprehension v2.0
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S.
Grantee Submission, Paper presented at the International Conference on Artificial Intelligence in Education (Utrecht, Netherlands, Jun 12, 2021)
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of comprehension (AMoC) simulates the construction of readers' mental representations of text by building syntactic and semantic relations between words, coupled with inferences of related concepts that rely on various automated semantic models. This paper introduces the second version of AMoC that builds upon the initial model with a revised processing pipeline in Python leveraging state-of-the-art NLP models, additional heuristics for improved representations, as well as a new radiant graph visualization of the comprehension model.
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED); Office of Naval Research (ONR) (DOD)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305A180144; R305A180261; N000141712300; N000142012623
Author Affiliations: N/A