NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: ED617004
Record Type: Non-Journal
Publication Date: 2021
Pages: 56
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Available Date: N/A
The Sampling Ratio in Multilevel Structural Equation Models: Considerations to Inform Study Design
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P.
Grantee Submission
Multilevel structural equation (MSEM) models allow researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This paper explores how variation in the sampling ratio in MSEM impacts the measurement of Level-2 (L2) latent constructs. Specifically, we investigated whether the sampling ratio is related to bias and variability in aggregated L2 construct measurement and estimation in the context of doubly latent MSEM models utilizing a two-step Monte Carlo simulation study. Findings suggest that while lower sampling ratios were related to increased bias, standard errors, and RMSE, the overall size of these errors was negligible, making the doubly latent model an appealing choice for researchers. An applied example using empirical survey data is further provided to illustrate the application and interpretation of the model. We conclude by considering the implications of various sampling ratios on the design of MSEM studies, with a particular focus on educational research. [The paper will be published in "Educational and Psychological Measurement."]
Publication Type: Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305H150027; R305A150221
Author Affiliations: N/A