ERIC Number: ED615619
Record Type: Non-Journal
Publication Date: 2021
Pages: 12
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Available Date: N/A
Math Operation Embeddings for Open-Ended Solution Analysis and Feedback
Zhang, Mengxue; Wang, Zichao; Baraniuk, Richard; Lan, Andrew
International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (14th, Online, Jun 29-Jul 2, 2021)
Feedback on student answers and even during intermediate steps in their solutions to open-ended questions is an important element in math education. Such feedback can help students correct their errors and ultimately lead to improved learning outcomes. Most existing approaches for automated student solution analysis and feedback require manually constructing cognitive models and anticipating student errors for each question. This process requires significant human effort and does not scale to most questions used in homeworks and practices that do not come with this information. In this paper, we analyze students' step-by-step solution processes to equation solving questions in an attempt to scale up error diagnostics and feedback mechanisms developed for a small number of questions to a much larger number of questions. Leveraging a recent math expression encoding method, we represent each math operation applied in solution steps as a transition in the math embedding vector space. We use a dataset that contains student solution steps in the Cognitive Tutor system to learn implicit and explicit representations of math operations. We explore whether these representations can: (1) identify math operations a student intends to perform in each solution step, regardless of whether they did it correctly or not; and (2) select the appropriate feedback type for incorrect steps. Experimental results show that our learned math operation representations generalize well across different data distributions. [For the full proceedings, see ED615472.]
Descriptors: Mathematics Instruction, Teaching Methods, Intelligent Tutoring Systems, Error Patterns, Feedback (Response), Error Correction, Cognitive Processes, Models, Homework, Learning Analytics, Problem Solving, Classification, Visual Aids, Generalization, Difficulty Level
International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: https://educationaldatamining.org/conferences/
Publication Type: Reports - Research; Speeches/Meeting Papers
Education Level: N/A
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF), Division of Information and Intelligent Systems (IIS)
Authoring Institution: N/A
Grant or Contract Numbers: 1917713
Author Affiliations: N/A