ERIC Number: ED607840
Record Type: Non-Journal
Publication Date: 2020-Jul
Pages: 7
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Available Date: N/A
Deep Embeddings of Contextual Assessment Data for Improving Performance Prediction
ClaviƩ, Benjamin; Gal, Kobi
International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (13th, Online, Jul 10-13, 2020)
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the state-of-the-art systems in predicting whether or not students will answer a given question correctly. In particular, DPE is unaffected by the cold-start problem which arises when new students come to the system with little to no data available. We also show strong performance of the model when removing students' histories altogether, relying in part on contextual information about the questions. This strong performance without any information about the learners' histories demonstrates the high potential of using deep embedded representations of contextual information in educational data mining. [For the full proceedings, see ED607784.]
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction, Performance, Intelligent Tutoring Systems, Student Evaluation, Data Collection, Models, Context Effect, Data Analysis, Artificial Intelligence
International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: http://www.educationaldatamining.org
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A