NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: ED596597
Record Type: Non-Journal
Publication Date: 2017-Jun
Pages: 6
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Available Date: N/A
Mining Innovative Augmented Graph Grammars for Argument Diagrams through Novelty Selection
Xue, Linting; Lynch, Collin F.; Chi, Min
International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (10th, Wuhan, China, Jun 25-28, 2017)
Augmented Graph Grammars are a graph-based rule formalism that supports rich relational structures. They can be used to represent complex social networks, chemical structures, and student-produced argument diagrams for automated analysis or grading. In prior work we have shown that Evolutionary Computation (EC) can be applied to induce empirically-valid grammars for student-produced argument diagrams based upon fitness selection. However this research has shown that while the traditional EC algorithm does converge to an optimal fitness, premature convergence can lead to it getting stuck in local maxima, which may lead to undiscovered rules. In this work, we augmented the standard EC algorithm to induce more heterogeneous Augmented Graph Grammars by replacing the fitness selection with a novelty-based selection mechanism every ten generations. Our results show that this novelty selection increases the diversity of the population and produces better, and more heterogeneous, grammars. [For the full proceedings, see ED596512.]
International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: http://www.educationaldatamining.org
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A