ERIC Number: ED575283
Record Type: Non-Journal
Publication Date: 2016
Pages: 102
Abstractor: As Provided
ISBN: 978-1-3694-8463-2
ISSN: N/A
EISSN: N/A
Available Date: N/A
A Quantitative Experimental Study of the Effectiveness of Systems to Identify Network Attackers
Handorf, C. Russell
ProQuest LLC, Ph.D. Dissertation, Capella University
This study analyzed the meta-data collected from a honeypot that was run by the Federal Bureau of Investigation for a period of 5 years. This analysis compared the use of existing industry methods and tools, such as Intrusion Detection System alerts, network traffic flow and system log traffic, within the Open Source Security Information Manager (OSSIM) against techniques that were used to prioritize the detailed analysis of the data which would aid in the faster identification of attackers. It was found that by adding the results from computing a Hilbert Curve, Popularity Analysis, Cadence Analysis and Modus Operandi Analysis did not introduce significant or detrimental latency for the identification of attacker traffic. Furthermore, when coupled with the traditional tools within OSSIM, the identification of attacker traffic was greatly enhanced. Future research should consider additional statistical models that can be used to guide the strategic use of more intense analysis that is conducted by deep packet inspection software and broader intelligence models from reviewing attacks against multiple organizations. Additionally, other improvements in detection strategies are possible by these mechanisms when being able to review full data collection. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com.bibliotheek.ehb.be/en-US/products/dissertations/individuals.shtml.]
Descriptors: Information Technology, Computer Security, Information Security, Program Effectiveness, Metadata, Data Analysis, Computer Networks, Identification, Statistical Analysis
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com.bibliotheek.ehb.be/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A