NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: ED560908
Record Type: Non-Journal
Publication Date: 2015-Jun
Pages: 4
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Available Date: N/A
Personalized Education; Solving a Group Formation and Scheduling Problem for Educational Content
Bahargam, Sanaz; Erdos, Dóra; Bestavros, Azer; Terzi, Evimaria
International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (8th, Madrid, Spain, Jun 26-29, 2015)
Whether teaching in a classroom or a Massive Online Open Course it is crucial to present the material in a way that benefits the audience as a whole. We identify two important tasks to solve towards this objective; (1) group students so that they can maximally benefit from peer interaction and (2) find an optimal schedule of the educational material for each group. Thus, in this paper we solve the problem of team formation and content scheduling for education. Given a time frame "d," a set of students S with their required need to learn different activities T and given "k" as the number of desired groups, we study the problem of finding "k" group of students. The goal is to teach students within time frame "d" such that their potential for learning is maximized and find the best schedule for each group. We show this problem to be NP-hard and develop a polynomial algorithm for it. We show our algorithm to be effective both on synthetic as well as a real data set. For our experiments we use real data on students' grades in a Computer Science department. As part of our contribution we release a semi-synthetic dataset that mimics the properties of the real data. [For complete proceedings, see ED560503.]
International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: http://www.educationaldatamining.org
Publication Type: Speeches/Meeting Papers; Reports - Evaluative
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: International Educational Data Mining Society
Identifiers - Location: Massachusetts
Grant or Contract Numbers: 1430145; 1414119; 1347522; 1239021; 1012798; 1218437; 1253393; 1320542; 1421759
Author Affiliations: N/A