NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1,036 to 1,050 of 2,245 results Save | Export
Zhou, Wenqi – ProQuest LLC, 2013
The advances in information technologies and the Internet significantly promote the prosperous growth of electronic commerce in recent years. Simply surfing the Internet allows consumers to conveniently explore endless product choices and a flood of related product information. As one of the most important sources of product information,…
Descriptors: Economic Factors, Computer Software, Marketing, Internet
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kaplan, David; Chen, Jianshen – Society for Research on Educational Effectiveness, 2013
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Descriptors: Bayesian Statistics, Models, Probability, Monte Carlo Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rindskopf, David – Society for Research on Educational Effectiveness, 2013
Single case designs (SCDs) generally consist of a small number of short time series in two or more phases. The analysis of SCDs statistically fits in the framework of a multilevel model, or hierarchical model. The usual analysis does not take into account the uncertainty in the estimation of the random effects. This not only has an effect on the…
Descriptors: Research Design, Bayesian Statistics, Computation, Data
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Galyardt, April; Goldin, Ilya – Journal of Educational Data Mining, 2015
In educational technology and learning sciences, there are multiple uses for a predictive model of whether a student will perform a task correctly or not. For example, an intelligent tutoring system may use such a model to estimate whether or not a student has mastered a skill. We analyze the significance of data recency in making such…
Descriptors: Achievement Rating, Performance Based Assessment, Bayesian Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, Wayne; Stewart, Sepideh – PRIMUS, 2014
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Descriptors: Markov Processes, Monte Carlo Methods, College Mathematics, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Rossman, Allan; Utts, Jessica – Journal of Statistics Education, 2014
This article offers a transcript of author Allan Rossman's interview with Jessica Utts, Professor and Chair of Statistics at the University of California-Irvine. Utts is also a Fellow of the American Statistical Association and a recipient of a Founders Award from ASA. Additionally, she has been elected as President of ASA for the year 2016. The…
Descriptors: Interviews, Statistics, College Faculty, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Lockwood, J. R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2014
A common strategy for estimating treatment effects in observational studies using individual student-level data is analysis of covariance (ANCOVA) or hierarchical variants of it, in which outcomes (often standardized test scores) are regressed on pretreatment test scores, other student characteristics, and treatment group indicators. Measurement…
Descriptors: Error of Measurement, Scores, Statistical Analysis, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
van Rijn, Peter W.; Rijmen, Frank – ETS Research Report Series, 2012
Hooker and colleagues addressed a paradoxical situation that can arise in the application of multidimensional item response theory (MIRT) models to educational test data. We demonstrate that this MIRT paradox is an instance of the explaining-away phenomenon in Bayesian networks, and we attempt to enhance the understanding of MIRT models by placing…
Descriptors: Item Response Theory, Educational Testing, Bayesian Statistics, Statistical Analysis
Liu, Junhui – ProQuest LLC, 2012
The current study investigated how between-subject and within-subject variance-covariance structures affected the detection of a finite mixture of unobserved subpopulations and parameter recovery of growth mixture models in the context of linear mixed-effects models. A simulation study was conducted to evaluate the impact of variance-covariance…
Descriptors: Statistical Analysis, Models, Sample Size, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel – Multivariate Behavioral Research, 2012
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Descriptors: Bayesian Statistics, Factor Analysis, Models, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Bes, Benedicte; Sloman, Steven; Lucas, Christopher G.; Raufaste, Eric – Cognitive Science, 2012
The study tests the hypothesis that conditional probability judgments can be influenced by causal links between the target event and the evidence even when the statistical relations among variables are held constant. Three experiments varied the causal structure relating three variables and found that (a) the target event was perceived as more…
Descriptors: Statistical Inference, Probability, Correlation, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ross, Andrew M. – College Mathematics Journal, 2012
To compute the probability of having a disease, given a positive test result, is a standard probability problem. The sensitivity and specificity of the test must be given and the prevalence of the disease. We ask how a test-maker might determine the tradeoff between sensitivity and specificity. Adding hypothetical costs for detecting or failing to…
Descriptors: Diseases, Probability, Bayesian Statistics, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gordovil-Merino, Amalia; Guardia-Olmos, Joan; Pero-Cebollero, Maribel – Psicologica: International Journal of Methodology and Experimental Psychology, 2012
In this paper, we used simulations to compare the performance of classical and Bayesian estimations in logistic regression models using small samples. In the performed simulations, conditions were varied, including the type of relationship between independent and dependent variable values (i.e., unrelated and related values), the type of variable…
Descriptors: Regression (Statistics), Models, Simulation, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ruggeri, Azzurra; Lombrozo, Tania; Griffiths, Thomas L.; Xu, Fei – Developmental Psychology, 2016
Children are active learners: they learn not only from the information people offer and the evidence they happen to observe, but by actively seeking information. However, children's information search strategies are typically less efficient than those of adults. In two studies, we isolate potential sources of developmental change in how children…
Descriptors: Information Seeking, Search Strategies, Cognitive Style, Cognitive Structures
Pages: 1  |  ...  |  66  |  67  |  68  |  69  |  70  |  71  |  72  |  73  |  74  |  ...  |  150