Publication Date
| In 2026 | 0 |
| Since 2025 | 45 |
| Since 2022 (last 5 years) | 348 |
| Since 2017 (last 10 years) | 814 |
| Since 2007 (last 20 years) | 1607 |
Descriptor
Source
Author
Publication Type
Education Level
Location
| Australia | 31 |
| Germany | 20 |
| United Kingdom (England) | 18 |
| United States | 18 |
| Canada | 17 |
| Netherlands | 17 |
| United Kingdom | 14 |
| California | 12 |
| Spain | 12 |
| North Carolina | 11 |
| China | 10 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 4 |
| Individuals with Disabilities… | 2 |
| Aid to Families with… | 1 |
| Elementary and Secondary… | 1 |
| Elementary and Secondary… | 1 |
| Every Student Succeeds Act… | 1 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards with or without Reservations | 2 |
| Does not meet standards | 1 |
Ruoyu Lu; Yinuo Xu; Jiyu Xu; Tengfei Wang; Zhi Li – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2024
Free time in a working memory task often improves the recall performances of the to-be-remembered items. It is still debated whether the free-time effect in working memory is purely proactive, purely retroactive, or both proactive and retroactive. In the present study, we used the single-gap paradigm to explore this question. In Experiment 1, we…
Descriptors: Bayesian Statistics, Foreign Countries, Short Term Memory, Time Perspective
Jolien Cremers; Laust Hvas Mortensen; Claus Thorn Ekstrøm – Sociological Methods & Research, 2024
Longitudinal studies including a time-to-event outcome in social research often use a form of event history analysis to analyse the influence of time-varying endogenous covariates on the time-to-event outcome. Many standard event history models however assume the covariates of interest to be exogenous and inclusion of an endogenous covariate may…
Descriptors: Longitudinal Studies, Social Science Research, Research Methodology, Bayesian Statistics
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Xiao Liu; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
In psychology, researchers are often interested in testing hypotheses about mediation, such as testing the presence of a mediation effect of a treatment (e.g., intervention assignment) on an outcome via a mediator. An increasingly popular approach to testing hypotheses is the Bayesian testing approach with Bayes factors (BFs). Despite the growing…
Descriptors: Sample Size, Bayesian Statistics, Programming Languages, Simulation
Paige L. Kemp; Vanessa M. Loaiza; Colleen M. Kelley; Christopher N. Wahlheim – Cognitive Research: Principles and Implications, 2024
The efficacy of fake news corrections in improving memory and belief accuracy may depend on how often adults see false information before it is corrected. Two experiments tested the competing predictions that repeating fake news before corrections will either impair or improve memory and belief accuracy. These experiments also examined whether…
Descriptors: Young Adults, Older Adults, Beliefs, Misinformation
Denis Shchepakin; Sreecharan Sankaranarayanan; Dawn Zimmaro – International Educational Data Mining Society, 2024
Bayesian Knowledge Tracing (BKT) is a probabilistic model of a learner's state of mastery for a knowledge component. The learner's state is a "hidden" binary variable updated based on the correctness of the learner's responses to questions corresponding to that knowledge component. The parameters used for this update are inferred/learned…
Descriptors: Algorithms, Bayesian Statistics, Probability, Artificial Intelligence
Paganin, Sally; Paciorek, Christopher J.; Wehrhahn, Claudia; Rodríguez, Abel; Rabe-Hesketh, Sophia; de Valpine, Perry – Journal of Educational and Behavioral Statistics, 2023
Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT…
Descriptors: Bayesian Statistics, Item Response Theory, Guidance, Evaluation Methods
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Rott, Kollin W.; Lin, Lifeng; Hodges, James S.; Siegel, Lianne; Shi, Amy; Chen, Yong; Chu, Haitao – Research Synthesis Methods, 2021
Meta-analysis is commonly used to compare two treatments. Network meta-analysis (NMA) is a powerful extension for comparing and contrasting multiple treatments simultaneously in a systematic review of multiple clinical trials. Although the practical utility of meta-analysis is apparent, it is not always straightforward to implement, especially for…
Descriptors: Bayesian Statistics, Meta Analysis, Computation, Networks
Alari, Krissina M.; Kim, Steven B.; Wand, Jeffrey O. – Measurement in Physical Education and Exercise Science, 2021
There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two approaches produce similar estimations and predictions in large-sample studies, their interpretations are different. Bland Altman analysis is a statistical method that is widely used for comparing two methods of measurement. It was originally…
Descriptors: Statistical Analysis, Bayesian Statistics, Measurement, Probability
Hao, Jia; Gan, Jianhou; Zhu, Luyu – Education and Information Technologies, 2022
In order to analyze the non-linear and uncertain relationships among the student-related features, curriculum-related features as well as the environment-related features, and then quantify the corresponding impacts on students' final MOOC performance in a valid way, we first construct a Students' performance Prediction Bayesian Network (SPBN) via…
Descriptors: Online Courses, Academic Achievement, Prediction, Student Improvement
Alex Tabarrok – Journal of Economic Education, 2025
During the pandemic, the economic way of thinking was extraordinarily useful, leading to a quick consensus among economists of widely differing political persuasions on many issues of pandemic policy. Yet speaking to politicians, bureaucrats, and the public revealed many ways in which the economic way of thinking was foreign and sometimes…
Descriptors: COVID-19, Pandemics, Economics, Economics Education
Michael Röbner; Karin Binder; Corbinian Geier; Stefan Krauss – Educational Studies in Mathematics, 2025
It has been established that, in Bayesian tasks, performance and typical errors in reading information from filled visualizations depend both on the type of the provided visualization and information format. However, apart from reading visualizations, students should also be able to create visualizations on their own and successfully use them as…
Descriptors: Academic Achievement, Error Patterns, Probability, Visualization
Mauricio Garnier-Villarreal; Terrence D. Jorgensen – Grantee Submission, 2024
Model evaluation is a crucial step in SEM, consisting of two broad areas: global and local fit, where local fit indices are use to modify the original model. In the modification process, the modification index (MI) and the standardized expected parameter change (SEPC) are used to select the parameters that can be added to improve the fit. The…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Indexes

Peer reviewed
Direct link
