Publication Date
| In 2026 | 0 |
| Since 2025 | 155 |
| Since 2022 (last 5 years) | 563 |
| Since 2017 (last 10 years) | 1110 |
| Since 2007 (last 20 years) | 1914 |
Descriptor
Source
Author
Publication Type
Education Level
Location
| Taiwan | 49 |
| China | 46 |
| United Kingdom | 29 |
| Pennsylvania | 27 |
| Germany | 25 |
| Turkey | 24 |
| Canada | 22 |
| Massachusetts | 22 |
| Spain | 22 |
| United States | 16 |
| California | 15 |
| More ▼ | |
Laws, Policies, & Programs
| Every Student Succeeds Act… | 3 |
| Elementary and Secondary… | 2 |
| American Rescue Plan Act 2021 | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 4 |
| Meets WWC Standards with or without Reservations | 6 |
| Does not meet standards | 2 |
Andrew Runge; Sarah Goodwin; Yigal Attali; Mya Poe; Phoebe Mulcaire; Kai-Ling Lo; Geoffrey T. LaFlair – Language Testing, 2025
A longstanding criticism of traditional high-stakes writing assessments is their use of static prompts in which test takers compose a single text in response to a prompt. These static prompts do not allow measurement of the writing process. This paper describes the development and validation of an innovative interactive writing task. After the…
Descriptors: Material Development, Writing Evaluation, Writing Assignments, Writing Skills
Xie, Tao; Liu, Ruobin; Chen, Yijin; Liu, Geping – IEEE Transactions on Learning Technologies, 2021
The use of conversational agents in computer-supported collaborative learning (CSCL) has been identified as a useful tactic for motivational intervention. The purpose of the current study was to design and implement a conversational agent called a motivational online conversational agent (MOCA) that incorporated motivational interviewing (MI) and…
Descriptors: Learner Engagement, Cooperative Learning, Intelligent Tutoring Systems, Student Motivation
Sychev, Oleg; Penskoy, Nikita; Anikin, Anton; Denisov, Mikhail; Prokudin, Artem – Education Sciences, 2021
Intelligent tutoring systems have become increasingly common in assisting students but are often aimed at isolated subject-domain tasks without creating a scaffolding system from lower- to higher-level cognitive skills, with low-level skills often neglected. We designed and developed an intelligent tutoring system, CompPrehension, which aims to…
Descriptors: Intelligent Tutoring Systems, Comprehension, Undergraduate Students, Computer Science Education
Badrinath, Anirudhan; Wang, Frederic; Pardos, Zachary – International Educational Data Mining Society, 2021
Bayesian Knowledge Tracing, a model used for cognitive mastery estimation, has been a hallmark of adaptive learning research and an integral component of deployed intelligent tutoring systems (ITS). In this paper, we provide a brief history of knowledge tracing model research and introduce pyBKT, an accessible and computationally efficient library…
Descriptors: Models, Markov Processes, Mathematics, Intelligent Tutoring Systems
Kochmar, Ekaterina; Vu, Dung Do; Belfer, Robert; Gupta, Varun; Serban, Iulian Vlad; Pineau, Joelle – International Journal of Artificial Intelligence in Education, 2022
Intelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we…
Descriptors: Intelligent Tutoring Systems, Automation, Feedback (Response), Dialogs (Language)
Rebolledo-Mendez, Genaro; Huerta-Pacheco, N. Sofia; Baker, Ryan S.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2022
Many previous studies have highlighted the influence of learners' affective states on learning with tutoring systems. However, the associations between learning and learners' meta-affective capability are still unclear. The goal of this paper is to analyse meta-affective capability and its influence on learning outcomes as well as the dynamics of…
Descriptors: Affective Behavior, Intelligent Tutoring Systems, Mathematics Education, Secondary School Students
Dutt, Sarthika; Ahuja, Neelu Jyothi; Kumar, Manoj – Education and Information Technologies, 2022
Several studies have investigated the need for learning difficulties identification specifically Dyslexia, Dysgraphia and Dyscalculia. The identification of these difficulties among children is a multiple screening process under psychologist's supervision. Learning difficulties identification is a difficult task; it affects the learning process…
Descriptors: Intelligent Tutoring Systems, Special Education, Learning Disabilities, Students with Disabilities
Nguyen, Hanh thi; Choe, Ann Tai; Vicentini, Cristiane – Classroom Discourse, 2022
To inform pedagogical decisions about using technology, it is important to understand from the ground up how technology is utilised during language learning activities. This paper takes an ethnomethodological conversation analytic approach to examine a learner's participation in epistemic management actions and its consequences for second language…
Descriptors: Second Language Learning, Online Searching, Intelligent Tutoring Systems, Videoconferencing
Schmucker, Robin; Wang, Jingbo; Hu, Shijia; Mitchell, Tom M. – Journal of Educational Data Mining, 2022
We consider the problem of assessing the changing performance levels of individual students as they go through online courses. This student performance modeling problem is a critical step for building adaptive online teaching systems. Specifically, we conduct a study of how to utilize various types and large amounts of log data from earlier…
Descriptors: Academic Achievement, Electronic Learning, Artificial Intelligence, Predictor Variables
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2023
Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can…
Descriptors: Equal Education, Mathematics Education, Word Problems (Mathematics), Problem Solving
Vassoyan, Jean; Vie, Jill-Jênn – International Educational Data Mining Society, 2023
Adaptive learning is an area of educational technology that consists in delivering personalized learning experiences to address the unique needs of each learner. An important subfield of adaptive learning is learning path personalization: it aims at designing systems that recommend sequences of educational activities to maximize students' learning…
Descriptors: Reinforcement, Networks, Simulation, Educational Technology
Caspari-Sadeghi, Sima – Journal of Educational Technology Systems, 2023
Intelligent assessment, the core of any AI-based educational technology, is defined as embedded, stealth and ubiquitous assessment which uses intelligent techniques to diagnose the current cognitive level, monitor dynamic progress, predict success and update students' profiling continuously. It also uses various technologies, such as learning…
Descriptors: Artificial Intelligence, Educational Technology, Computer Assisted Testing, Barriers
Husni Almoubayyed; Stephen E. Fancsali; Steve Ritter – Grantee Submission, 2023
Adaptive educational software is likely to better support broader and more diverse sets of learners by considering more comprehensive views (or models) of such learners. For example, recent work proposed making inferences about "non-math" factors like reading comprehension while students used adaptive software for mathematics to better…
Descriptors: Reading Ability, Computer Software, Mathematics Education, Intelligent Tutoring Systems
Huixiao Le; Yuan Shen; Zijian Li; Mengyu Xia; Luzhen Tang; Xinyu Li; Jiyou Jia; Qiong Wang; Dragan Gaševic; Yizhou Fan – British Journal of Educational Technology, 2025
Understanding learners' preferences in educational settings is crucial for optimizing learning outcomes and experience. As artificial intelligence (AI) becomes increasingly integrated into educational contexts, it is crucial to understand learners' preferences between AI and human tutors to support their learning. While AI demonstrates growing…
Descriptors: Student Attitudes, Preferences, Electronic Learning, Artificial Intelligence
Jiyou Jia; Tianrui Wang; Yuyue Zhang; Guangdi Wang – Asia Pacific Journal of Education, 2024
In designing an intelligent tutoring system, a core area of the application of AI in education, tips from the system or virtual tutors are crucial in helping students solve difficult questions in disciplines like mathematics. Traditionally, the manual design of general tips by teachers is time-consuming and error-prone. Generative AI, like…
Descriptors: Problem Solving, Artificial Intelligence, Learning Processes, Prompting

Peer reviewed
Direct link
