NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1457147
Record Type: Journal
Publication Date: 2025-Feb
Pages: 31
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1076-9986
EISSN: EISSN-1935-1054
Available Date: N/A
Using Regularized Methods to Validate Q-Matrix in Cognitive Diagnostic Assessment
Daoxuan Fu; Chunying Qin; Zhaosheng Luo; Yujun Li; Xiaofeng Yu; Ziyu Ye
Journal of Educational and Behavioral Statistics, v50 n1 p149-179 2025
One of the central components of cognitive diagnostic assessment is the Q-matrix, which is an essential loading indicator matrix and is typically constructed by subject matter experts. Nonetheless, to a large extent, the construction of Q-matrix remains a subjective process and might lead to misspecifications. Many researchers have recognized the importance of estimating or validating the Q-matrix, but most of them focus on the conditions of relatively large sample sizes. This article aims to explore Q-matrix validation possibilities under small sample conditions and uses regularized methods to validate the Q-matrix based on the compensatory reparametrized unified model and generalized deterministic inputs, noisy "and" gate models. Simulation studies were conducted to evaluate the viability of the modified least absolute shrinkage and selection operator (Lasso) and modified smoothly clipped absolute deviation (SCAD) methods, comparing them with existing methods. Results show that the modified Lasso and the modified SCAD methods outperform the stepwise, Hull, and MLR-B methods in general, especially under the conditions of small sample sizes. While good recovery in all small sample size conditions is not guaranteed, the modified methods demonstrate advantages across various item quality conditions. Also, a real data set is analyzed to illustrate the application of the modified methods.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: https://sagepub-com.bibliotheek.ehb.be
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A