NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1,036 to 1,050 of 2,199 results Save | Export
Feng, Junchen – ProQuest LLC, 2017
The future of education is human expertise and artificial intelligence working in conjunction, a revolution that will change the education as we know it. The Intelligent Tutoring System is a key component of this future. A quantitative measurement of efficacies of practice to heterogeneous learners is the cornerstone of building an effective…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Bayesian Statistics, Models
Steven Dang; Michael Yudelson; Kenneth R. Koedinger – Grantee Submission, 2017
The current study introduces a model for measuring student diligence using online behaviors during intelligent tutoring system use. This model is validated using a full academic year dataset to test its predictive validity against long-term academic outcomes including end-of-year grades and total work completed by the end of the year. The model is…
Descriptors: Student Behavior, Intelligent Tutoring Systems, Educational Technology, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Wang, Shuhan – ProQuest LLC, 2019
A common drawback in traditional language education is that all students in the same class use the same content. Since students may have different backgrounds such as prior knowledge and learning speed, one single curriculum may not be able to accommodate every student. Unfortunately, most students cannot afford personalized language learning,…
Descriptors: Second Language Learning, Second Language Instruction, Computer Assisted Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Poitras, Eric G.; Lajoie, Susanne P.; Doleck, Tenzin; Jarrell, Amanda – Educational Technology & Society, 2016
Learner modeling, a challenging and complex endeavor, is an important and oft-studied research theme in computer-supported education. From this perspective, Educational Data Mining (EDM) research has focused on modeling and comprehending various dimensions of learning in computer-based learning environments (CBLE). Researchers and designers are…
Descriptors: Intelligent Tutoring Systems, Data, Data Analysis, Medical Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Dimitrova, Vania; Brna, Paul – International Journal of Artificial Intelligence in Education, 2016
STyLE-OLM (Dimitrova 2003 "International Journal of Artificial Intelligence in Education," 13, 35-78) presented a framework for interactive open learner modelling which entails the development of the means by which learners can "inspect," "discuss" and "alter" the learner model that has been jointly…
Descriptors: Artificial Intelligence, Technology Uses in Education, Intelligent Tutoring Systems, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Ohlsson, Stellan – International Journal of Artificial Intelligence in Education, 2016
The ideas behind the constraint-based modeling (CBM) approach to the design of intelligent tutoring systems (ITSs) grew out of attempts in the 1980's to clarify how declarative and procedural knowledge interact during skill acquisition. The learning theory that underpins CBM was based on two conceptual innovations. The first innovation was to…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Learning Theories
Graesser, Arthur C. – Grantee Submission, 2016
AutoTutor helps students learn by holding a conversation in natural language. AutoTutor is adaptive to the learners' actions, verbal contributions, and in some systems their emotions. Many of AutoTutor's conversation patterns simulate human tutoring, but other patterns implement ideal pedagogies that open the door to computer tutors eclipsing…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Communication Strategies, Dialogs (Language)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Allen, Laura K.; Jacovina, Matthew E.; Dascalu, Mihai; Roscoe, Rod D.; Kent, Kevin M.; Likens, Aaron D.; McNamara, Danielle S. – Grantee Submission, 2016
This study investigates how and whether information about students' writing can be recovered from basic behavioral data extracted during their sessions in an intelligent tutoring system for writing. We calculate basic and time-sensitive keystroke indices based on log files of keys pressed during students' writing sessions. A corpus of prompt-based…
Descriptors: Essays, Writing Processes, Writing (Composition), Writing Instruction
Selent, Douglas; Patikorn, Thanaporn; Heffernan, Neil – Grantee Submission, 2016
In this paper, we present a dataset consisting of data generated from 22 previously and currently running randomized controlled experiments inside the ASSISTments online learning platform. This dataset provides data mining opportunities for researchers to analyze ASSISTments data in a convenient format across multiple experiments at the same time.…
Descriptors: Intelligent Tutoring Systems, Data, Randomized Controlled Trials, Electronic Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clement, Benjamin; Oudeyer, Pierre-Yves; Lopes, Manuel – International Educational Data Mining Society, 2016
Online planning of good teaching sequences has the potential to provide a truly personalized teaching experience with a huge impact on the motivation and learning of students. In this work we compare two main approaches to achieve such a goal, POMDPs that can find an optimal long-term path, and Multi-armed bandits that optimize policies locally…
Descriptors: Intelligent Tutoring Systems, Markov Processes, Models, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jordan, Pamela; Albacete, Patricia; Katz, Sandra – Grantee Submission, 2016
We explore the effectiveness of a simple algorithm for adaptively deciding whether to further decompose a step in a line of reasoning during tutorial dialogue. We compare two versions of a tutorial dialogue system, Rimac: one that always decomposes a step to its simplest sub-steps and one that adaptively decides to decompose a step based on a…
Descriptors: Algorithms, Decision Making, Intelligent Tutoring Systems, Scaffolding (Teaching Technique)
Peer reviewed Peer reviewed
Direct linkDirect link
Sottilare, Robert A. – Technology, Instruction, Cognition and Learning, 2018
This article is intended as a companion document to the more focused report provided by the author at the 2017 American Education Research Association (AERA) Conference as part of the Technology, Instruction, Cognition & Learning Special Interest Group's Symposium on Intelligent Tutoring Systems (ITSs). Both the AERA talk and this article…
Descriptors: Literature Reviews, Goal Orientation, Integrated Learning Systems, Instructional Design
Peer reviewed Peer reviewed
Direct linkDirect link
Nielen, Thijs M. J.; Smith, Glenn G.; Sikkema-de Jong, Maria T.; Drobisz, Jack; van Horne, Bill; Bus, Adriana G. – Journal of Educational Computing Research, 2018
In this digital era, a fundamental challenge is to design digital reading materials in such a way that they improve children's reading skills. Since reading books is challenging for many fifth graders--particularly for those genetically susceptible to attention problems--the researchers hypothesized that guidance from a digital Pedagogical Agent…
Descriptors: Grade 5, Reading Motivation, Incidental Learning, Vocabulary
Liu, Ran; Stamper, John; Davenport, Jodi – Grantee Submission, 2018
Temporal analyses are critical to understanding learning processes, yet understudied in education research. Data from different sources are often collected at different grain sizes, which are difficult to integrate. Making sense of data at many levels of analysis, including the most detailed levels, is highly time-consuming. In this paper, we…
Descriptors: Intelligent Tutoring Systems, Learning, Data Analysis, Student Development
Pages: 1  |  ...  |  66  |  67  |  68  |  69  |  70  |  71  |  72  |  73  |  74  |  ...  |  147