NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1483168
Record Type: Journal
Publication Date: 2025-Sep
Pages: 12
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0021-9584
EISSN: EISSN-1938-1328
Available Date: 0000-00-00
Knowing from Glowing: Evidence from Fluorescence Laboratories on the Impact of Visualization on Meaningful Learning
Journal of Chemical Education, v102 n9 p3828-3839 2025
Fluorescence experiments hold great potential to develop and deepen student understanding of fundamental chemical concepts because the phenomenon is engaging and also illustrates many different chemical concepts and applications, including in quantum mechanics, spectroscopy, kinetics, equilibrium, and stoichiometry, through easily observable effects. Thus, many fluorescence experiments have been published for higher education. However, less attention has been given to analyzing students' actual learning and experiences in systematic ways. In this paper, we share findings from interviews with students who completed three different fluorescence laboratory experiments in general chemistry courses at an urban public commuter university, analyzed through the lens of meaningful learning. Interview data for the affective learning dimension of meaningful learning was done with Galloway et al.'s 18-word affective matrix with addition of a new category that emerged strongly in the interviews: "enjoyed". Interview transcripts were also analyzed for elements corresponding to the psychomotor and cognitive domains of meaningful learning. Results documented how important the affective and psychomotor domains were to students' experiences in this setting. In addition to the three domains of meaningful learning, we also documented the particular role of the process of "visualization" to the students and examined how students connected their observations to molecular-level processes and corresponding models using Johnstone's triangle as a framework. Our findings indicate that students primarily engaged with and appreciated the psychomotor domain and the visualization at the macroscopic level of the fluorescence experiments, which contributed to their understanding of the submicroscopic level but not at the symbolic level. By engaging students in the affective domain, the visually compelling experiments support deeper connections between macroscopic observations and submicroscopic models. We hope that this research informs future directions in designing curriculum and supports the effective integration of fluorescence experiments into general chemistry instruction.
Division of Chemical Education, Inc. and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail: eic@jce.acs.org; Web site: http://pubs.acs.org/jchemeduc
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A