Publication Date
| In 2026 | 0 |
| Since 2025 | 45 |
| Since 2022 (last 5 years) | 348 |
| Since 2017 (last 10 years) | 814 |
| Since 2007 (last 20 years) | 1607 |
Descriptor
Source
Author
Publication Type
Education Level
Location
| Australia | 31 |
| Germany | 20 |
| United Kingdom (England) | 18 |
| United States | 18 |
| Canada | 17 |
| Netherlands | 17 |
| United Kingdom | 14 |
| California | 12 |
| Spain | 12 |
| North Carolina | 11 |
| China | 10 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 4 |
| Individuals with Disabilities… | 2 |
| Aid to Families with… | 1 |
| Elementary and Secondary… | 1 |
| Elementary and Secondary… | 1 |
| Every Student Succeeds Act… | 1 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards with or without Reservations | 2 |
| Does not meet standards | 1 |
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Karyssa A. Courey; Frederick L. Oswald; Steven A. Culpepper – Practical Assessment, Research & Evaluation, 2024
Historically, organizational researchers have fully embraced frequentist statistics and null hypothesis significance testing (NHST). Bayesian statistics is an underused alternative paradigm offering numerous benefits for organizational researchers and practitioners: e.g., accumulating direct evidence for the null hypothesis (vs. 'fail to reject…
Descriptors: Bayesian Statistics, Statistical Distributions, Researchers, Institutional Research
Williams, Zachary J.; Suzman, Evan; Bordman, Samantha L.; Markfeld, Jennifer E.; Kaiser, Sophia M.; Dunham, Kacie A.; Zoltowski, Alisa R.; Failla, Michelle D.; Cascio, Carissa J.; Woynaroski, Tiffany G. – Journal of Autism and Developmental Disorders, 2023
Interoception, the body's perception of its own internal states, is thought to be altered in autism, though results of empirical studies have been inconsistent. The current study systematically reviewed and meta-analyzed the extant literature comparing interoceptive outcomes between autistic (AUT) and neurotypical (NT) individuals, determining…
Descriptors: Autism Spectrum Disorders, Sensory Experience, Bayesian Statistics, Meta Analysis
de Jong, Valentijn M. T.; Campbell, Harlan; Maxwell, Lauren; Jaenisch, Thomas; Gustafson, Paul; Debray, Thomas P. A. – Research Synthesis Methods, 2023
A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate…
Descriptors: Classification, Meta Analysis, Bayesian Statistics, Evaluation Methods
Sperandei, Sandro; Bastos, Leonardo Soares; Ribeiro-Alves, Marcelo; Reis, Arianne; Bastos, Francisco Inácio – International Journal of Social Research Methodology, 2023
The aim of this study is to investigate the impact of different logistic regression estimators applied to RDS studies via simulation and the analysis of empirical data. Four simulated populations were created with different connectivity characteristics. Each simulated individual received two attributes, one of them associated to the infection…
Descriptors: Regression (Statistics), Recruitment, Sampling, Simulation
Ong, Jia Hoong; Liu, Fang – Journal of Autism and Developmental Disorders, 2023
According to Bayesian/predictive coding models of autism, autistic individuals may have difficulties learning probabilistic cue-outcome associations, but empirical evidence has been mixed. The target cues used in previous studies were often straightforward and might not reflect real-life learning of such associations which requires learners to…
Descriptors: Autism Spectrum Disorders, Probability, Cues, Associative Learning
Yamaguchi, Kazuhiro; Zhang, Jihong – Journal of Educational Measurement, 2023
This study proposed Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were…
Descriptors: Algorithms, Simulation, Mathematics Achievement, Bayesian Statistics
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Xiao Liu; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2022
Mediation analysis is widely used to study whether the effect of an independent variable on an outcome is transmitted through a mediator. Bayesian methods have become increasingly popular for mediation analysis. However, limited research has been done on formal Bayesian hypothesis testing of mediation. Although hypothesis testing using Bayes…
Descriptors: Bayesian Statistics, Hypothesis Testing, Mediation Theory, Vignettes
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Miranda N. Long; Darko Odic – Child Development, 2025
Children rely on their Approximate Number System to intuitively perceive number. Such adaptations often exhibit sensitivity to real-world statistics. This study investigates a potential manifestation of the ANS's sensitivity to real-world statistics: a negative power-law distribution of objects in natural scenes should be reflected in children's…
Descriptors: Number Concepts, Numeracy, Intuition, Mathematics Education
Tenko Raykov; Christine DiStefano; Lisa Calvocoressi – Educational and Psychological Measurement, 2024
This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with…
Descriptors: Bayesian Statistics, Models, Decision Making, Comparative Analysis
Jona Lilienthal; Sibylle Sturtz; Christoph Schürmann; Matthias Maiworm; Christian Röver; Tim Friede; Ralf Bender – Research Synthesis Methods, 2024
In Bayesian random-effects meta-analysis, the use of weakly informative prior distributions is of particular benefit in cases where only a few studies are included, a situation often encountered in health technology assessment (HTA). Suggestions for empirical prior distributions are available in the literature but it is unknown whether these are…
Descriptors: Bayesian Statistics, Meta Analysis, Health Sciences, Technology
Huan Liu – ProQuest LLC, 2024
In many large-scale testing programs, examinees are frequently categorized into different performance levels. These classifications are then used to make high-stakes decisions about examinees in contexts such as in licensure, certification, and educational assessments. Numerous approaches to estimating the consistency and accuracy of this…
Descriptors: Classification, Accuracy, Item Response Theory, Decision Making

Direct link
Peer reviewed
