Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 60 |
| Since 2017 (last 10 years) | 357 |
| Since 2007 (last 20 years) | 860 |
Descriptor
Source
Author
| Cai, Li | 16 |
| Mislevy, Robert J. | 16 |
| Samejima, Fumiko | 16 |
| Yuan, Ke-Hai | 16 |
| Bentler, Peter M. | 15 |
| Lee, Sik-Yum | 12 |
| Reckase, Mark D. | 11 |
| Savalei, Victoria | 11 |
| Enders, Craig K. | 10 |
| Lord, Frederic M. | 10 |
| Rabe-Hesketh, Sophia | 8 |
| More ▼ | |
Publication Type
Education Level
Location
| Germany | 23 |
| Australia | 21 |
| China | 17 |
| Netherlands | 17 |
| Turkey | 17 |
| California | 13 |
| Canada | 13 |
| Finland | 10 |
| Italy | 10 |
| United Kingdom (England) | 10 |
| United States | 10 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 2 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models
Rioux, Charlie; Little, Todd D. – International Journal of Behavioral Development, 2021
Missing data are ubiquitous in studies examining preventive interventions. This missing data need to be handled appropriately for data analyses to yield unbiased results. After a brief discussion of missing data mechanisms, inappropriate missing data treatments and appropriate missing data treatments, we review the current state of missing data…
Descriptors: Prevention, Intervention, Data Analysis, Correlation
Eser, Mehmet Taha – International Online Journal of Education and Teaching, 2021
This study aims to compare the results of the factor analysis performed with Frequentist and Bayesian approaches. The number of sub-dimensions of the measurement tool obtained from different methods, the variation of the items in the sub-dimensions, and the fit statistics' differentiation were examined. 778 students constitute the study sample.…
Descriptors: Factor Analysis, Bayesian Statistics, Measurement Techniques, Goodness of Fit
Ranger, Jochen; Kuhn, Jörg-Tobias; Wolgast, Anett – Journal of Educational Measurement, 2021
Van der Linden's hierarchical model for responses and response times can be used in order to infer the ability and mental speed of test takers from their responses and response times in an educational test. A standard approach for this is maximum likelihood estimation. In real-world applications, the data of some test takers might be partly…
Descriptors: Models, Reaction Time, Item Response Theory, Tests
Mohammed Alqabbaa – ProQuest LLC, 2021
Psychometricians at an organization named the Education and Training Evaluation Commission (ETEC) developed a new test scoring method called the latent D-scoring method (DSM-L) where it is believed that the new method itself is much easier and more efficient to use compared to the Item Response Theory (IRT) method. However, there are no studies…
Descriptors: Item Response Theory, Scoring, Item Analysis, Equated Scores
Brusco, Michael – INFORMS Transactions on Education, 2022
Logistic regression is one of the most fundamental tools in predictive analytics. Graduate business analytics students are often familiarized with implementation of logistic regression using Python, R, SPSS, or other software packages. However, an understanding of the underlying maximum likelihood model and the mechanics of estimation are often…
Descriptors: Regression (Statistics), Spreadsheets, Data Analysis, Prediction
Shen, Ting; Konstantopoulos, Spyros – Practical Assessment, Research & Evaluation, 2022
Large-scale assessment survey (LSAS) data are collected via complex sampling designs with special features (e.g., clustering and unequal probability of selection). Multilevel models have been utilized to account for clustering effects whereas the probability weighting approach (PWA) has been used to deal with design informativeness derived from…
Descriptors: Sampling, Weighted Scores, Hierarchical Linear Modeling, Educational Research
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly over-reject the null hypothesis: [sigma] = [sigma(theta)] when the sample size is small. Reweighted least squares (RLS) avoids this problem. In some models, the vector of parameter must contain means, variances, and covariances, yet whether RLS…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Jorge Salas – Grantee Submission, 2024
Despite the growing interest in incorporating response time data into item response models, there has been a lack of research investigating how the effect of speed on the probability of a correct response varies across different groups (e.g., experimental conditions) for various items (i.e., differential response time item analysis). Furthermore,…
Descriptors: Item Response Theory, Reaction Time, Models, Accuracy
Karadavut, Tugba – Applied Measurement in Education, 2021
Mixture IRT models address the heterogeneity in a population by extracting latent classes and allowing item parameters to vary between latent classes. Once the latent classes are extracted, they need to be further examined to be characterized. Some approaches have been adopted in the literature for this purpose. These approaches examine either the…
Descriptors: Item Response Theory, Models, Test Items, Maximum Likelihood Statistics
Wyse, Adam E.; McBride, James R. – Measurement: Interdisciplinary Research and Perspectives, 2022
A common practical challenge is how to assign ability estimates to all incorrect and all correct response patterns when using item response theory (IRT) models and maximum likelihood estimation (MLE) since ability estimates for these types of responses equal -8 or +8. This article uses a simulation study and data from an operational K-12…
Descriptors: Scores, Adaptive Testing, Computer Assisted Testing, Test Length
Nagy, Gabriel; Ulitzsch, Esther – Educational and Psychological Measurement, 2022
Disengaged item responses pose a threat to the validity of the results provided by large-scale assessments. Several procedures for identifying disengaged responses on the basis of observed response times have been suggested, and item response theory (IRT) models for response engagement have been proposed. We outline that response time-based…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Predictor Variables, Classification
Stephen L. Wright; Michael A. Jenkins-Guarnieri – Journal of Psychoeducational Assessment, 2024
The current study sought out to advance the Social Self-Efficacy and Social Outcome Expectations scale using multiple approaches to scale development. Data from 583 undergraduate students were used in two scale development approaches: Classic Test Theory (CTT) and Item Response Theory (IRT). Confirmatory factor analysis suggested a 2-factor…
Descriptors: Measures (Individuals), Expectation, Self Efficacy, Item Response Theory

Peer reviewed
Direct link
